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ABSTRACT

A study of the laboratory stress-deformation characteristics of soils was
performed. This study consists of two main parts. The first part includes a
thorough literature survey of the subject. The factors believed to influence
the stress-strain behavior of soils are presented. Some suggestions are
made concerning the development of new test equipment and the modification of
available equipment and procedures, Trials to measure lateral deformation of
triaxial test specimens, using optical and photographic methods, are reported.
Based on a literature review, evaluation of available test equipment is made.
The modulus of deformation and lateral strain ratio are suggested as the
proper parameters describing stress-strain properties of soils.

The second part of the investigation covers a laboratory study of
stresses, strains, modulus of deformation, and lateral strain ratio for dry
sands and saturated clays under various conditions. The variation of these
quantities with the density of the sand, the confining pressure, the rates
of strain usually encountered in laboratory testing of sand, the consolidation
pressure and moisture content of clays, the.stress history and degree of over-
consolidation of the clay, plasticity index of the clay, and the level of
stress and strain, is presented, The limited effect of small variations in
the rate of strain on the angle of internal friction of a dry sand is reported.
Also, a correlation is suggested among the moisture content, cohesion, and
plasticity of normally-consolidated clays, Various forms of quick triaxial

tests, under one-cycle static load conditions, were used. A method is given

iii



to eliminate the effect of friction of the loading rod in triaxial tests.
A procedure for measuring lateral deformations of vacuum triaxial test speci-
mens of dry sand, and unconfined clay samples, using extensometers is also

outlined. All test specimens were fabricated in the laboratory.
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SYMBOLS AND NOTATIONS
cross-sectional area of the test specimen
original cross-sectional area of the test specimen
cohesion
cubic inch
diameter of the test specimen
original diameter of the test speciman
modulus of deformation
modulus of elasticity
modulus of deformation at one quarter the maximum deviator
stress
modulus of deformation at half the maximum deviator stress
modulus of deformation at three quarters the maximum
deviator stress
modulus of deformation at the maximum deviator stress
initial tangent modulus of deformation
factor of safety
shear modulus of deformation
modulus of rigidity
height of the test specimen
original height of the test speciman
inch
coefficient of earth pressure at rest
liquid limit

pound



min

pcf
psi
R.S.

sq.in,

minute

normally-consolidated clay

number

over-consolidated clay

over-consolidation ratio

axial load acting on the specimen, in excess of the confining

pressure

plasticity index

pounds per cubic foot

pounds per square inch

rate of strain

square inch

Taylor Marl

volume of the test speciman

original volume of the test speciman

Vicksburg silty clay

moisture content

density

axial deformation

lateral deformation

change in volume of the test specimen

axial strain

axial strain

axial strain

axial strain

axial strain

at

at

at

at

a straight line

half the maximum deviator stress
three quarters the maximum deviator stress
the maximum deviator stress

which the stress-strain curve is no longer

xvi




€ = lateral strain

V) = lateral strain ratio

W’ = Poisson's ratio

Hso = lateral strain ratio at half the maximum deviator stress
Mioo0 = lateral strain ratio at the maximum deviator stress
g = axial, or normal, stress

(o} = major principal stress

Op = intermediate principal stress

O3 = minor principal stress

Oc = consolidation pressure

o = over-consolidation pressure

Op = deviator stress

c

deviator stress at 0.l in, per in, axial strain

.
-
i

Op = deviator stress at 0.2 in, per in, axial strain
0.2

GA = half the maximum deviator stress
50

c . -
Dy g = three quarters the maximum deviator stress

GA = deviator stress at which the stress-strain curve ceases to
1

be a straight line

GA = maximum deviator stress
ma X

T = shear stress

4] = angle of internal friction

/ = per

% = per cent
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CHAPTER 1

INTRODUCTION

1,1 The Significance of Stress-Deformation Characteristics of Soils

The determinatior and study of stress-deformation characteristics of
soils are of basic importance in many areas of soil mechanics and foundation
engineering, Stress distribution and soil deformation problems as well as
soil-structure interaction problems involve the stress-strain behavior of
soils, Earth pressure and stability problems, and the design of founda-
tions for various purposes, whether subject to static or transient loading,
require the knowledge of such behavior, Settlement of footings, design of
foundations for power plants, dams, or missile-launching silos, and airfield
or highway pavement design are but few examples of the many applications of
such studies,

The invention of electronic digital computers in recent years, and
their widespread use to solve soil engineering problems involving stress-
deformation behavior of soils, made the study of such behavior even more
worthwhile, It is now possible to solve a variety of complicated problems
in a few seconds that only a few years ago we would not have attempted to
solve because of the tremendous amount of computations involved requiring
great effort and time,

Theoretical investigations are based, in general, on the behavior of a
perfectly elastic soil with a linear stress-strain curve, This is not abso-
lutely correct, however, and an investigation of the stress-strain properties

of different soils is definitely required,




Some investigators believe that the theory of plasticity may be used to
solve stability problems dealing with the ultimate failure of a mass. The
deformations of a soil mass are determined by the theory of elasticity (21)*.
The question of how far the theory of elasticity can be applied to soils has
yet to be fully answered but the fact still remains that lack of elastic
constants and the uncertain delineation of the elastic and plastic states
of a soil enormously hinder the progress in such application, Other investi-
gators advocate the consideration of soil as a construction material, comparable
to concrete, for example (43). Unfortunately there is not sufficient stress-

strain data for soils that can lead to a rational design of earth structures.

1.2 Laboratory and Field Stress-Strain Behavior of Soils

At the present time there is no test in soil mechanics that exactly
reproduces all natural conditions, This leads to laboratory stress-strain
curves which are somewhat different than the actual ones for the same soil
mass in the field. The problem of estimating soil properties under natural
conditions from laboratory test data is one that probably will always be among
the most complex in soil engineering and its solution will always be subject
to many pitfalls., Arriving at a general stress-strain theory for soils that
involves a large, unknown number of complex stress-strain-time relationships
must be acknowledged as an impossible goal (37).

Prediction of field behavior from laboratory data can be accomplished
when new laboratory and field testing equipment and techniques, that fully
reproduce field conditions, are developed. Trials along this line should be

encouraged. Until this goal is reached, however, modification of present day

%
See bibliography, pp 172-175,



equipment must be continued to eliminate much of its shortcomings. The

author firmly believes that the determination of the actual behavior of

soils in the field may be accomplished by correlations between laboratory
stress-strain properties and well documented case records and results of full-
scale field tests on various foundation elements, Thus a comprehensive

study of the subject at the present time would include, among other things,
the use of available equipment to investigate fully the laboratory stress-
strain characteristics of soils. Skempton (33) carried out a similar

study on the London clay using the unconfined compression test,

1.3 Objectives and Scope of the Investigation

The urgent need for an intensive investigation of the stress-deforma-
tion characteristics of soils has been pointed out in the preceeding articles.
The present study is intended to be a step forward along this line. It
consists of two main parts. The first part includes a literature review
which summarizes our present state of knowledge in this area of soil
mechanics. The factors believed to influence the stress-strain behavior of
soils are presented, Some suggestions are made concerning the development
of new test equipment and the modification of available equipment and proce-
dures. Trials to measure lateral deformations of triaxial test specimens,
using optical and photographic methods, are reported. Based on the literature
survey, an evaluation of available test equipment is made, The modulus of
deformation and the lateral strain ratio are suggested as the two parameters
necessary to describe the stress-strain properties of a soil. The second
part of this investigation covers a laboratory study of stress-strain properties
of some sands and clays under one-cycle static load conditions using various

forms of the quick triaxial test, A method for eliminating the effect of




friction of the loading rod in the triaxial test is presented, Also a proce-
dure is given for measuring lateral deformation of vacuum triaxial, and uncon-
fined, test specimens using dial extensometers,

It was noticed in almost all similar studies reported in the literature,
that no attention was given to the deformation of the soil and that the
strength was the main interest, It was therefore decided to study both
stresses and strains during the entire range of the test for the various
soils. It is hoped that the accumulation of such information from the
present and future studies will enable the selection of proper stress-strain
curves of soils, if no sample is available, The information gained helps
also in understanding the stress-deformation behavior of soils under various
conditions. 1In this respect the present laboratory investigation is believed
to outline some of the necessary steps to reach that goal.

The factors that were studied in the tests on dry sands are the
density of the sand, the confining pressure, and the rates of strain usually
encountered in laboratory testing, For clays, both normally-consolidated
and over-consolidated samples were tested, The effect of moisture content,
consolidation pressure, confining pressure, plasticity, and degree of over-
consolidation are presented,

The modulus of deformation and lateral strain ratio for some soils were
also studied, Their variation with the different factors mentioned in the
previous paragraph, as well as with the level of stress and strain, is reported.

Attention was also given to the soil strength. For normally consolidated
clays, a relation is suggested among the cohesion, moisture content, and plasti-
city., The effect of small variations in the rate of strain on the angle of

internal friction of a dry sand is also presented,



2.1

GENERAL

PART A

CHAPTER II

CONSIDIRATIONS

THEORY OF ELASTICITY AND ITS APPLICATION TO SOILS

Considerations Based on the Theory of Elasticity

Most theoretical investigators assume that soils are elastic, homo-

geneous and isotropic.

The relations between the states of stress and

strain at a point of an elastic body are expressed by Hooke's law which states

that stress is proportional to strain,

The fact that the deformation pro-

duced in a body upon application of load is proportional to it, independent

of time, and recoverable after the removal of this load is true in most

elastic materials only for small strains,

The definition of elasticity

does not require the stress-strain curve of a material to be linear.

is the assumption made, however, in the linearized theory of elasticity

which assumes small deformations (4).

material to be elastic, isotropic, and homogemeous.

This ‘

Hooke's law in this case assumes the

The generalized form of

Hooke's law (48), which gives the linear relations between stress and strain

components, can be

where

cxx

Oyy

cll

Ci1 €xx
Ca1 Exx
Cay €xx
C41 €xx
Ce1 €xx

Cel exx

denotes

given
+ Cy2
+ Cpp
+ Cag
+ Cup
+ Csp

+ Cgg

by the following six formulas:

ny

eYY

eYY

GYY

€yy

eYY

+ Ci3
+ Caa
+ Caa
+ Cua
+ Cga

+ Cgsa

GZZ

ell

elastic constants.

+ Cyq
+ Coq
+ Cay
+ Cuq
+ Cggq

+ Cgq

Yxy
Yxy
Yxy
Yxy
Yxy

Yxy

+ Cs
+ Czg
+ Casg
+ C48
+ Cgs

+ Cgs

Yxz
Yxz
Yxz
Yxz
Yxz

Yxz

+ Ce
+ Cze
+ Cag
+ Cqe
+ Cge

+ Cge

Yyz
Yyz
Yyz

Yy z

Yyz

(L



€xxs €yy» €, = mnormal strains,

(o}

xxs Oyys Oyq normal stresses,

1t

Yyzs Yxzs Yxy shear strains,

I

Tyzs Txzs Txy shear stresses,

The normal and shear stresses acting on the element shown in Fig. 1
are those used in the generalized Hooke's law, Equilibrium requires that
Tyx = Txys Tys = Tzy, and Ty, = T,,, Thus the state of stress can be com-
pletely specified by only three shear and three normal components of stress,
For each stress component there is a corresponding strain component, In
anisotropic materials a pure stress o,, does not necessarily produce a pure
strain &,,, but it may cause any other type of strain (48).

This generalized form of Hooke's law gives thirty-six possible
elastic constants, However, for an isotropic material the number is reduced
to twenty-one independent elastic constants which are necessary in the case
of an isotropic body without symmetry (where Ci2 = C3y, C13 = Cz3, and so
on). The number of elastic constants will decrease with increasing symmetry

and in the case of cubic symmetry only three elastic constants are required

to define the states of stress and strain, These three are (48):

’

E : the modulus of elasticity defined as the ratio of stress to
strain
u' : Poisson's ratio defined as the ratio of the strain in the

direction perpendicular to the applied load to that in the
direction of load,

G : the shear modulus of elasticity defined as the ratio of shear
stress to shear strain. It may also be termed the modulus of

rigidity,
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Although there are three fundamental constants, in the above case, only

two of these are independent because of the following relation among them:

’
’ _ E
G—m........................(2)

Thus in the case of elastic, homogeneous, isotropic bodies, and with
small deformations, that is in the case of applying the assumptions of the
linearized Hooke's law, the system of stresses and strains within a mass is
completely defined with only two independent elastic constants, Generally
the modulus of elasticity E’ and Poisson's ratio u' are used, Of course,
the boundary conditionms in any specific problem together with compatibility
conditions; that is, the requirement that deformations of a body be finite,
continuous, and single valued, have to be satisfied,

When the deformations increase beyond a certain limit, the application of
the linearized theory of elasticity becomes no longer possible, For larger
deformations the linear relationship between stress and strain no longer
exists, In this range most engineering materials show both elastic and plastic
deformations, Elastic deformations are recoverable upon removal of the load
that caused them while plastic deformations are not; that is, they are
permanent. Elastic recovery is due to the action of interatomic and inter-
molecular forces while plastic deformation is the result of permanent displace-
ment of atoms or molecules (48). For most materials the elastic deformation
precedes plastic strain.

There are basically two types of deformations (48);:

1. Pure elongation or contraction.

2, Pure shear action, or sliding.

Any deformation can be given as a combination of these two. Both stress and

strain can be shown graphically by the Mohr circle,



The volumetric strain (40) occurring in an element of an elastic mass

subjected to axial compression is given by the formula:

4
I

where

Av = volume change of the element,

v = original volume of the element.
0 = axial compressive stress.

E’ = modulus of elasticity.

u' = Poisson's ratio.

Poisson's ratio equals zero in the case of complete lateral confinement;
that is, when there is no deformation taking place in a direction perpendi-
cular to the applied load. It is equal to one-half when no volume changes
occur during compression, From equation number (3) it can be seen that

'

uw’ is less than one-half in case of volume decrease and greater than one-

half when there is volume increase,

2.2 Limitations and Possibilities in the Application of the Theory of

Elasticity to Soils.

There is doubt as to whether soils can truly be termed elastic and
whether the theory of elasticity can be used in the field of soil mechanics,
Further, there are factors required in such application for which there is
insufficient background. The essential elastic constants of soils; namely,
the modulus of elasticity and Poisson's ratio, are treated by assumptions
largely unsubstantiated by factual knowledge, Two and three dimensional

solutions using the theory of elasticity have found many applications since
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Hooke's law was developed. Bousinnesq, Westergard, and Newmark, among others,
have applied this theory to problems in the field of soil mechanics and
determined the stress distribution due to loads on a semi-infinite elastic
mass (43).

Elastic response to stress is the basis for applying the theory of
elasticity for any material and is also a requirement in the determination
of elastic constants, This completely elastic state is seldom developed in
soils which have a dual elastic-plastic nature that must be examined to
determine the validity of the elastic approach used extensively in soil
mechanics. 1In problems dealing with soils, both elastic and plastic proper-
ties of soils must be treated. TFailure to acknowledge the importance of both
elasticity and plasticity in soils is the major impediment to the rational
application of the theory of elasticity to soils.

Soils in general follow complicated stress-strain-time laws and this
together with the fact that soils are rarely homogeneous and isotropic makes
it difficult to predict stresses and displacements accurately. Thus to
accomplish this task, it is necessary to accept over-simplified models of soil
behavior in order to arrive at an engineering approximation. The accepted
model of soil is the homogeneous, isotropic, and elastic half space. The
results of the Waterways Experiment Station tests suggest that, in clay soils
at least, computation of stresses by the theory of elasticity is admissible L.
If a clay is compacted, the remolding destroys any structural anisotropy and
results in a material which is generally isotropic (1).

Expressing the mechanical properties of a soil by coefficients which can
be used in theoretical computations is difficult because these coefficients

are not constants but vary under different conditions. There are two main
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problems in soil mechanics, stress-strain relationship of a soil in an elastic
state and the shear strength in a plastic state (5). It is customary to assume
as constants for the elastic case the modulus of elasticity and Poisson's
ratio, and for the plastic state the angle of internal friction ¢ and
cohesion ¢ (5).

Terzaghi (40) states that if the factor of safety of a mass of soil, with
respect to failure by plastic flow, exceeds a value of about three the state
of stress in the soil is likely to be more or less similar to the state of
stress computed on the assumption that the soil is perfectly elastic. Hence
the state of stress in a mass of soil under the influence of moderate stresses
can be estimated by means of the theory of elasticity. The importance of the
error associated with the results of the computation depends chiefly on the
extent to which the real stress-strain relations depart from Hooke's law.

This departure increases rapidly as the state of plastic equilibrium is
approached,

Compression of the natural soil is caused mainly by a decrease in the
porosity and not a reduction of the grain size (5). For this reason soil
behaves quite differently under loading and unloading.

Soils exhibit stress-strain relations which are often curved throughout
their entire length, The variable and seemingly unpredictable stress-strain
properties of soils preclude the gelection of proper elastic moduli (11). Thus
the actual deformation characteristics of soils are required.

The conditions existing in any problem are seldom exactly comparable
to the conditions upon which elastic formulas are based, If soil specimens
can be subjected to the stresses that will be applied to the soil mass at a

proposed project, and a straight line plot is obtained when the observed




strains are drawn versus stresses, then the theory of elasticity can be
applied (37). Effects of any factor involving the time element bring in
complications which represent limitations to the validity of the application
of the theory of elasticity to soils.

In the application of the theory of elasticity to soils no considera-
tion is given to the general non-linear character of soils, nor are the
effects of anisotropy or non-homogeneous conditions taken into account.

A study of these effects represents an important area of research which
would have immediate practical applications,

The assumptions of continuity and isotropy in the soil particle skele-
ton, or structure, are far reaching but inescapable. If any theory of dis-
continuous behavior in the interior of the soil body were seriously proposed,
it would be necessary to obtain radically different data (29). At present
there is scarcely sufficient reliable data to determine isotropic constants
for soils and quantitative analysis of anisotropy must be left until the
nature of any deviation from isotropic predictions is clearly established,

In the application of the theory of elasticity, the assumption that
the material is homogeneous and isotropic can be justified to some extent
in the case of soils, although it is not strictly correct in this respect (43).

Spillers and Stoll (35) suggest that in order to formulate a continuum
model for a soil mass, which from a theoretical point of view is an inelastic
continuum, a simple model must be used to start with (the simplest continuum
model is a homogeneous, isotropic and elastic solid analyzed for conditioms
of small strain) and desired properties added until a model is achieved which
is sufficiently detailed to represent the real material (plasticity can be

added to the soil model as a first modifying effect). It is necessary to

13



decide which properties are to be included and this can only be determined from
a study of the stress-deformation and other required characteristics for
various soils.

The accuracy of predicting settlements by elastic methods is influenced
by time effects, anisotropy, creep, and inelasticity of soils (36).

In all soils, deformations on first loading are largely irreversible
(28). But in a cyclic loading test on clay, if the load were increased
to a certain value, a great part of the permanent deformation would occur.
The unloading and reloading to a value within the prestress, therefore, will
be mostly elastic., The true elastic modulus will be that calculated from the
reloading curve, which may be either different from or identical to the
modulus for unloading (24). The modulus defined by the virgin loading
involves both elastic and plastic effects and is not a true modulus of
elasticity but should be considered in some practical problems. Cyclic
loading tests on clay indicated that the recompression curves of stress-
strain diagrams are straight up to certain limits of stress below failure and
the modulus of recompression appears to be the same for each cycle in the same
test (24). The unloading curves, however, are essentially non-linear.

Werner (43) reports similar observation and states that if a soil is
subjected to stress, deformation is evidenced in each of the three principal
planes. If the stress is removed, a certain amount of deformation is
recovered (elastic). As the stress is applied and removed a number of times,
the amount of plastic deformation decreases until a point is reached where
each cycle essentially tracks the values of the previous one, and the slope
of the stress-strain curve remains constant. At this point the soil is said

to be elastic within the range of its stress experience. As the stress situation
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is extended to greater values, plasticity must again be removed by repetitive
loading. An elastic state would have to be reached before any elastic constants
can be determined to be used in an intelligent application of the theory of

elasticity.

15



CHAPTER III

DETERMINATION OF STRESS-STRAIN CHARACTERISTICS OF SOILS

3.1 General

The problem of determining the stresses and strains within a soil mass
subjected to some form of loading is one of the most important in soil
mechanics. There are many theories developed to express the state of stress
and defommation at any point within a soil mass. Most of these are based
on the theory of elasticity, for example, the work done by Buossinesq,
Westergard, or Newmark. Some researchers tried to take into account the
effect of soil plasticity or other soils properties, but all of them used
simplifying assumptions to help reduce the great number of variables involved.
Some of these attempts are given in references (1), (5), (11), (35) and (36),
which are only given as examples of such attempts.

In all cases adequate knowledge of the stress-strain properties of the
s0oil mass is vital before any rational analysis of stresses and deformation
within the loaded mass can be accomplished. This emphasizes the need for a
laboratory study of the axial as well as lateral stress-deformation behavior
of soils under various conditions. The author believes that two quantities
analogeous to the modulus of elasticity E’ and Poisson's ratio u' in the
case of elastic materials, will represent the required soil properties.
These two quanitities, when determined for various soils, are not expected
to be constant in all cases., Thus a study of their pattern of variation,
under various conditions, is required. Experimental studies in this area of

soil mechanics are few and incomplete in covering the wide scope of the subject
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and any investigation along this line would be helpful in exploring this com-
plex problem and in adding to our present insufficient knowledge about the

subject,

3.2 Factors Influencing Stress-Strain Properties of Soils

There are many factors that affect the stress-deformation behavior of
soils. A complete and comprehensive study of the influence of these factors
is very important for the determination of such behavior under various
conditions. The following variables are believed to be among these factors:
1. Type of soil; for example, clay, silt, or sand.
2., Moisture content of the soil, which is most important for clays.
3. Confining pressure, or depth effect.
4. Density of the soil (especially in the case of sands).
5. Plasticity and activity of the soil (for clays).
6. Grain size distribution, shape, and texture of the soil particles
(this factor is important for sands.)

7. Degree of saturation of the soil with water.

8. Degree of remolding or disturbance to which the soil structure is
subjected, which is important for clays. The thixotropy of the
soil can definitely be entered into the picture here.

9. Level of stress, or the level of strain,

10. Type of loading, whether static, cyclic, repeated or dynamic loading.
In each case there are several things to consider, for example, in
the case of repeated loading, the magnitude, frequency, and duration
of the applied load are among the factors to be investigated,

11. Type of test. There are many tests used in the laboratory determina-

tion of stress-strain properties of soils., For example, there are
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12.

13,

14,

various types of triaxial compression tests (undrained, consolidated
undrained, and drained tests)., There is also the unconfined compres-
sion test and others. The size of the specimen used in any test may
also have some effect on the results,
Time, Possible effects of time can be separated into the following
categories:
(A) Thixotropic effects (for example, time of storage before testing).
(B) Aging effects (length of time allowed for consolidation, other
than primary, prior to loading).
(C) Strain-rate effects, that is, the speed with which the load
is applied.
(D) Creep effects (or plastic flow under constant stress).
Stress history of the soil., For the case of clays consideration has
to be given to whether the soil is normally consolidated or over-
consolidated and to the degree of over-consolidation (as measured
by the over-consolidation ratio, defined as the ratio of the over-
consolidation pressure to that acting on the soil at present.)
Types of stress system (22). Both the magnitude and direction of
principal stresses should be considered. The three basic types of
stress systems that can be applied during shear, which depend on the
relative magnitude of the applied intermediate principal stress,
g, , are:
(A) Triaxial compression, in which the intermediate principal
stress Oz equals the minor principal stress 0j.
(B) Triaxial extension, in which 0z = 07, the major principal

stress,
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(C) Plane strain, in which 0 is intermediate between 0, and
Oz, and in which all strains in the soil are parallel to the
plane of o0; and o0j.

15. Type of consolidation, whether isotropic, that is, equal all-round
consolidation pressure, or anisotropic, which could either be
accomplished by allowing lateral deformation to occur or with no
lateral deformation taking place during consolidation in a case
of complete confinement,

16. The pore pressures developed and volume changes occurring in a
soil during loading. These two conaiderations are actually tied
closely to most of the above factors. The strength of the soil

has an effect and is related to the preceeding variables.

3.3 Modulus of Deformation

The modulus of deformation of a soil E is defined as the ratio of the
deviator stress to axial strain at any point on the stress-strain curve for
that soil. Since a big portion of any stress-strain curve for a soil is
generally non-linear, then the modulus of deformation is not a constant. This
is the case for virgin stress-strain curves, However, if the load is repeated,
it may be possible to eliminate most of the soil plasticity and arrive at a
single-valued modulus of deformation. The modulus in this case may be termed
the hysteresis modulus (11). The effect of repeated loading on the stress-
strain properties of some soils was mentioned in Art. 2.2, but more research
is definitely required in this area to draw final conclusions.

For a laboratory one-cycle stress-strain curve one of the following
quantities may be used to represent the modulus of deformation (11, 46)

of the soil:

19



1. The initial tangent modulus: determined from the slope of initial
straight line portion of the stress-strain curve, or the slope of
the initial tangent to the curve.

2. The secant modulus: taken at any point on the stress-strain curve.
The most commén value is Eg, taken at half the ultimate deviator
stress.

According to the type of loading used in determining the modulus of
deformation for any soil, it can be classified as (i) dynamic modulus of
deformation, (ii) hysteresis modulus (for repeated loading), or (iii) static
modulus of deformation. The dynamic modulus of deformation can be obtained
from a dynamic stress-strain curve determined in the laboratory. It can also
be determined by using data on the velocity of propagation of seismic waves
and elastic theories for computation, For repeated loading the hysteresis
modulus (sometimes known as the modulus of elasticity) is determined at the
end of a repetitive loading period during which small on-off load increments
are used until plastic deformation is eliminated (45).

Various tests and equipment are used to determine the modulus of
deformation. The triaxial test is one example of laboratory testing. There
are many forms of triaxial tests - for example, triaxial compression,
triaxial extention, and vacuum triaxial tests. The drainage conditions during
the test can be varied to allow, or prevent, consolidation. In the conventional
triaxial compression test the confining pressure is kept constant during the
test. Another form of the triaxial test is suggested (20, 46) where 0Oz is
varied so that the ratio 03/0, 1is always the same, This type of test may
be used to get anisotropic consolidation of the sample and is believed to be
a better representation of field conditions in some instances. The modulus

of deformation may vary when determined by different tests. In the field of




soil mechanics no test procedure has yet been developed that measures directly
the desired soil parameters. Thus the required properties must be determined
from the one test that better represents field conditions to get the most
accurate results, Other tests that can be used to determine the modulus

of deformation, beside the various forms of the triaxial test given above,
include:

1. A test to determine the constrained modulus of deformation in which
the soil is placed in a container to prevent lateral deformation
(the consolidometer ring is an example). This is a one-dimensional
compression case with complete confinement that is believed to
represent soil conditions in deep strata where lateral deformation
is negligible. The friction along the sides of the container and
between the soil and end plates should be minimized to assure
uniform stresses and strains throughout the sample. In this test
no failure of the sample is possible under the prevailing condi-
tions, Dynamic tests of this type have been performed by Wilson and
Sibley (46) and by Heierli (17). Other types of loading are also
believed possible in this test, Also the measurement of the
lateral load transmitted to the sides of the container seems
feasible.

2., The unconfined modulus of deformation can be determined for clays
only using the unconfined compression test, It is recommended to be
used only for empirical correlations.

3. The modulus of deformation for the case of plane strain: determined
from a plane strain apparatus such as the one described by Cornforth (8)
where the soil is loaded under conditions of plane strain., Such a

condition is often encountered in practical soil mechanics problems,

2l



The plane strain apparatus mentioned above needs much improvement
and is still under development.

The results obtained by various investigators point out the fact that
much needs to be done as far as the modulus of deformation of the soil is
concerned,

The shear modulus of deformation G can be determined from a test in
which the soil specimen is subjected to a shear stress and the developed
shear deformations measured subsequently, A test in which a torque is

applied to a solid or hollow cylindrical soil specimen (6, 15) may be used.

3.4 Lateral Strain Ratio

The lateral strain ratio p is defined as the ratio of the strain in
a direction perpendicular to the applied load (lateral strain in a triaxial
specimen) to that in a direction parallel to load (axial strain). It is
analogous to Poisson's ratio for elastic materials, but is not believed to
be a constant for soils under various conditions,

Lateral strain ratios for soils may be determined in the laboratory
by either direct or indirect methods. Direct methods involve the measure-
ment of axial and lateral deformations of a test specimen. The apparatus
that can be used is triaxial, unconfined, plane strain, or some other test
equipment suited for the purpose, Indirect methods involve the determination
of certain quantities, then using -some relations that tie them with the
lateral strain ratio, and which are based on simplifying assumptions (as will
be shown later on). In any case the determination of lateral strain ratios
for soils is a complicated task and in some instances requires reliance upon
various assumptions and is quite tedious and time consuming with present-day

facilities.
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The measurement of lateral deformations in a triaxial test is very diffi-
cult and may be accomplished in one of the following ways:

l. Optical methods of measuring the cross-section of a sample are
suggested by Escario and Uriel (12), who state that errors can be minimized
when two diametrically opposed readings are made. The author tried measuring
the lateral deformation of a sand specimen in a triaxial test, at various
strain levels during the test, using a theodolite placed at a known distance
from the specimen. After several trials it was concluded that there were
difficulties involved that made such measurement impractical. The speed
of the test prevented accurate measurement, as the person taking the readings
could not keep up with the normal rate of strain used (1% per minute). Another
factor that should be considered in these measurements is the fact that the
sample during the test generally does not remain a perfect cylinder, At
least two theodolites, perpendicular to each other, are recommended to get
the measurements at any one level of the specimen. In any test the base of
the triaxial cell, or any other element with known dimensions, is used to
establish the scale of all measurements taken by a theodolite in a particular
position,

2. Wolfskill and Buchanan (47) wused an etched girdle band at the center
height of the specimen and measured with an optical microscope. Only the mid-
height of the sample was measured.

Werner (43) measured the lateral deformation at the mid-height of a
triaxial test specimen under repetitive loading. A 3/8-inch steel band cut
from a clock spring, was machine scribed to 1/100-inch markings at one end.

At the other end a vernier was scribed to make possible an accuracy of

1/1000 inch in the observed measurements. The band was placed around the
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circumference of the specimen, at its middle height, and was constructed to
overlap with the scale on one side and the vernier on the other which were
read by a short focal length telescope clamped to the triaxial device. The
band was lubricated, as well as the sample, and rubber bands were placed
around the metal band to prevent slippage. Werner states that the lateral
strain at the mid-height of a triaxial specimen would be representative of
field conditions. He also admits that the band measuring to 0.001 inch was
not the precision instrument it was hoped to be and that there was doubt

as to whether the band was fully in contact with the specimen all the time.
He also points out the possibility of friction between the band and the
membrane, and the constriction of the specimen by the steel and rubber
bands.

Folque (13) measured lateral deformations in triaxial tests using a
steel wire anchored at one end and connected at the other to a mechanical
strain-gage., The steel wire was wound around the sample over small steel
rollers, He does not give any details of this method of measurement in the
listed reference.

3. Measurement of lateral deformations of triaxial test specimens using
electrical methods has been accomplished by some investigators (14, 10). In
reference (10) a test device which permits the determination of horizontal
deformations of cylindrical samples by means of electrical capacitive methods
is given. Reference (l4) mentions that the axial and lateral deformations
of triaxial test specimens were made electrically and that they could be
recorded photographically using a multi-channel high speed galvanometer recorder,

but there are not enough details given,.
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4. In vacuum triaxial tests on dry sand, the author measured the lateral
deformation at the mid-height of the specimen using four strain gauges placed
so that each two would be facing each other along the same line, and being
perpendicular to the other two. The details of these measurements will be
given in Chapter 4, This method was also used by the author in the case of
unconfined compression tests on clay,

5. The author suggests measuring lateral deformations of triaxial test
specimens by taking photographs of the entire specimen at various strain
levels during the test. It is recommended that two cameras be placed at
known distances, closest to the specimen and in such a way that photographs
of the specimen in two perpendicular directions could be taken., The scale
in each photograph can be determined by including a subject with known dimen-
sions such as the base on which the specimen rests, To get higher accuracy
the photograph can be projected on a wide calibrated screen, that is magnified
several times. The advantage of this method is that the entire profile of
the specimen is shown and its cross-section at any height can be measured,
This gives a measure of volume changes and an indication of the uniformity
of deformations, The method has been tried by the author, using one camera
only, in a very limited number of triaxial tests on dry sand. The indication
was that this method is very time consuming and expensive, More work has to
be done before any final conclusions can be drawn as to the exact degree of
accuracy of this method and its usefulness.

The preliminary design of a device intended to register axial and
radial deformations of a triaxial soil specimen is given in reference (25).

A parabolic mirror with a bulb at the focus, both placed inside the triaxial

cell with air pressure, sends a bundle of parallel rays toward the specimen,
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The shadow of the specimen is projected on a photographic film mounted on a
frame that can be rotated from outside the chamber through a set of gears.

Shocklay and Ahlvin (32) took full photographs of vacuum triaxial
test specimens of sand, at certain axial strains, to determine the average
diameter and apparent Volume changes.

6. The average cross-sectional area of a saturated triaxial test
sample, in drained triaxial tests, may be obtained by determining the
volume change and decrease in height of the sample, at any strain level,
and assuming that the cylindrical shape is retained throughout the test.

7. Bishop and Henkel (3) give a device that measures the change in
the circumference of a triaxial test specimen at one height, The lateral
deformation indicator is placed inside the pressure chamber in contact with
the specimen,

8. 1In undrained triaxial tests and unconfined compression tests on
saturated clays, the assumption of no volume change taking place during
the test can be made, The cross-sectional area of the specimen at any
instant during the test (A) can thus be determined knowing the original
cross-sectional area (A;), the initial height H; and the change in
height AH at that moment, Assuming constant volume and cylindrical shape

during the test (9) the following relation can be obtained:
A1H1=A(H"Al{)

or

A=T:g(4)
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where
€ = the axial strain at that instant,

A plane-strain apparatus is believed to be more suited and superior to
the triaxial test equipment in the measurement and study of lateral deforma-
tions in soils, Such an apparatus, however, is still not available in any
final, acceptable, and practical form,

The indirect determination of the lateral strain ratio will be briefly
discussed in the following paragraphs. Most of these methods are based on
assumptions which may not always be absolutely correct in the case of
soils. The following methods represent some possibilities for the indirect
determination of the lateral strain ratio for soils:

1. Consider the element of soil shown in Fig 2 (p. 9) subjected to a
vertical stress o0, . The shown horizontal stresses Ox and 0O,, which are
assumed to be equal due to symmetry, are produced due to the confinement of
the prism (21).

A stress O, acting on one side of the prism produces strains in its
own direction 2z and in the two perpendicular directions x and y ., Based
on the theory of elasticity, thehorizontal strains are equal to the vertical
strain multiplied by Poisson's ratio W’. For no lateral strains to occur in

any horizontal direction (that is, the condition of earth pressure at rest)
stresses must be added in the horizontal direction, opposite to the existing
stress, that would make the strain in this direction equal to zero (as shown

by the dotted arrows in Fig 2 for the x-direction). 1In this case:
Oy - u'cz - ulcy =0

Of (L-p") - po, =0
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The coefficient of earth pressure at rest ko is defined as the ratio
of the horizontal to vertical pressures when no lateral movement occurs.

Then:

This formula was developed by Terzaghi (40) and is presented here to
show the assumptions used., Based on this formula the lateral strain ratio
for soils can be determined if the value of the coefficient of lateral earth
pressure at rest for the soil ko is obtained by some means.

Terzaghi (39) evaluated the coefficient of lateral earth pressure at
rest by determining the value of the lateral pressure exerted by a soil sample
on the walls of a container,

Another method suggested by Krynine (21) for determining the coefficient
ko is to enclose a sample in a rubber envelope placed in a container with
water. The sample is subjected to loading and the pressure transmitted to
the water is measured (which is the lateral pressure of the soil),

In references (41, 42) a ring type device, similar to that used in
consolidation tests, was used, Loads were imposed upon a compacted sample
of sand confined in the ring. Strains were measured in the ring by SR-4
strain gages attached to the ring. By varying the degree of restraint,
through changing the thickness of the ring, it was hoped to get values of
ko by extrapolation (ko being the value of the coefficient of lateral
earth pressure when the strain equals zero). The tests were considered

inconclusive.
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Bishop and Henkel (3) describe what they call the ky-triaxial test
where a vertical load is applied to the soil specimen and the lateral
pressure varied until there is no lateral deformation in the specimen, The
‘lateral deformation is determined using the indicator mentioned before, and
described in the same reference,

In vacuum triaxial tests on dry sand, the author suggests the use of
the ko-test idea given below. The lateral deformation in this case can be
checked by strain gages touching the specimen,

In the preceeding paragraphs various suggestions have been presented
for the determination of the coefficient of lateral earth pressure at rest,
Experimental evaluation of these methods is required before any final con-
clusions can be reached,.

2. Using the assumptions made by the theory of elasticity, formula
number 2 can be derived, giving the relation between the modulus of elasticity
E', Poisson's ratio u' and the modulus of rigidity G’ . This formula can
be used to evaluate the lateral strain ratio for soils if the modulus of
deformation, and the modulus of shear deformation can be determined. This
is a problem that still remains to be solved and the variation of these so-
called constant quantities (E’, G’, and n’) for soils under various conditions

has to be studied,

3. The volumetric strain of an elastic element subjected to

AV
\
triaxial loading is given by formula number 3 (with Oy = 03). In a drained
triaxial test, the volume change taking place can be measured throughout the

test, If the modulus of deformation is determined for the soil in question,

then equation 3 can be used to evaluate the lateral strain ratio for the soil,



The methods previously described for the indirect determination of the
lateral strain ratio for soils need to be tested experimentally to determine
their validity and applicability for different soils and varying conditions.

The pattern of variations of p , if any, must also be determined,

3.5 Laboratory Testing Used in the Determination of the Stress-Strain

Characteristics of Soils.

There are many tests used to evaluate the stress-strain properties of
soils. Most of these tests have been mentioned in the preceding parts. All
available equipment at the present time have some shortcomings as far as the
determination of stress-strain behavior of soils is concerned, Some modifi-
cation of present day testing equipment and procedures, or the development
of entirely new tests, is needed,

Since many practical problems in soils mechanics approximate more
closely the condition of plane strain than that of axial symmetry, used in
the triaxial test, and due to the difficulty of measuring lateral deforma-
tions of a triaxial test specimen, the author tried to develop a plane strain
apparatus with controlled drainage, or a triaxial test that permits independent
control of the three principal stresses, so that generalized states of stress
can be examined, including the important case of plane strain., However, the
relatively high compressibility of the soil skeleton and the magnitude of
strains required to cause failure lead to mechanical difficulties which
make independent control too complicated. Both ideas were abandoned after
realizing the many practical problems involved and the long period of time
required to arrive at any reasonable design, if possible. The plane strain
apparatus described by Conforth (8) is to be considered as only one trial

in the right direction, since it still has many limitations. The continuation




of this and similar attempts, to reach a final design of plane strain as well
as other equipment in this area, is strongly urged,

The triaxial test is still the most popular test in soil mechanics used
to determine strength and stress-strain properties of soils. It has advantages
and limitations that will be presented later on. In spite of its disadvantages,
the triaxial test is considered by the author to be the best available test
at the present time, especially if some modification could be made to overcome
its shortcomings (as will be discussed). This conclusion was reached after
a thorough review of the literature concerning testing of soils. The triaxial
test is extensively used by various investigators. The author believes that
to obtain the stress-deformation properties of soils for the varying condi-
tions encountered in the field, more than one type of test would probably
be required, Test conditions must reproduce, as closely as possible, field
conditions of the problem at hand.

Since it has been concluded that the triaxial test is the most widely
accepted test, at present, and since it is the test used in the laboratory
study presented in the next chapters, a discussion of the advantages and
limitations of this test appear to be worthwhile at this point. The triaxial
test has many advantages among which are:

1. The stress conditions, although not absolutely constant throughout
the sample, are nearer to constant than in other types of apparatus., Also
all stress values are known with fair accuracy throughout the test (37).

2. Control of drainage conditions during the test is possible.

3. Determination of volume changes and pore pressures of saturated
soil specimens can be accomplished throughout the test.

4, Test results are analyzed and explained by the conventional Mohr

theory.
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5. Various specimen sizes can be adapted depending on the grain size
distribution of the soil, Different types and rates of loading are also
possible.

6. Confining all-round pressure is controlled in the triaxial cell.

The following aré the main disadvantages of the cylindrical triaxial
test:

1. 1In conventional triaxial tests soil specimens are consolidated under
equal all-round pressure, that is, isotropic consolidation. This is not
believed to be the case, however, in the field where anisotropic consolida-
tion occurs. The initial state of stress in nature, before any change
takes place, must be correctly represented in the test, Results obtained
from tests, in which the initial consolidation is under an equal all-round
pressure, cannot therefore be applied directly to practical problems without
making allowance for the probable stress ratio in the natural ground (3).

2. One of the main criticisms of the triaxial test is the nonuniformity
of stresses and deformations at all but extremely small strains due to friction
at the end platens which cause barrelling effects (30). Cylindrical triaxial
test samples are subjected at their top and bottom surfaces to friction which
prevents lateral strain and causes bulging to occur at the center of the sample,
which indicates that conditions are not uniform (37).

Research into stress-strain relationships of soils requires a method of
applying a controlled set of stresses, The triaxial test approaches this
requirement at small strains., However, at large strains, non-uniformity of
sample deformation is the source of numerous errors. In undrained tests,
non-uniformity of stress causes pore pressure gradients and local drainage
within the soil specimen, depending upon the speed of testing (30). There

is a possibility that even at unchanged water content there is a redistribution
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of water content within a triaxial test sample which may change its strength
characteristics in a manner not necessarily representative of a large soil
mass (7). Thus pore water pressure measurement at the base of a triaxial
specimen cannot be applied to calculate effective stresses at the center,
Non-uniform density and volume changes, throughout the triaxial compression
test specimen during loading between rigid end plates, are reported by
Shocklay and Ahlvin (32). They state that if non-uniform conditions exist
in a triaxial test specimen, then stresses, strains, and volume changes
computed on the basis of average specimen conditions may not be at all indic-
ative of the changes that are occurring in the failure zone, especially in
cases where failure occurs as bulging of the specimen rather than on a
well-defined failure plane,

Werner (43) states that the behavior of the triaxial specimen as a
whole would not approximate that of the elemental volume due to the effect
of friction at the end plates. Employing the triaxial method to approximate
field conditions, the lateral deformation at the mid-height of the specimen
would be representative of field conditions as it is farthest from the end
restraint,

There is a stress variation from the center of the specimen to its
periphery, but if the triaxial test specimen is chosen with a length to
diameter-ratio of from two to three, an accurate shear plane is developed
which is unaffected by frictional end effects, This will minimize the effect
of end restrain on the soil strength (23).

Taylor (37) concludes that in spite of the non-uniformity in the
triaxial test, the average action of the sample in the test is the only
action that can be considered since it is the nearest obtainable approach

to the true stress-strain condition of the soil in the field.
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3., The ideal laboratory test for soils would be one with uniform stress
and strain throughout the sample, Actually such a condition is not possible,
since non-uniform conditions of stress and strain occur in all types of tests,
and failures are always progressive, to a degree (37). It should be
remembered, however, that if the loading on a large mass of soil in nature
is gradually increased until failure is incipient, the stresses will seldom,
if ever, be uniform over an entire rupture surface, and failure will not be
reached at all points at the same time, but will be progressive., The strains
that occur will not be uniform, and concentrations of stress will tend to
take place at points of maximum strain, causing rupture to start at these
points and then progress through the mass (37).

4., The axial load is reduced by piston friction (3). The friction between
the loading rod and the bushing may become appreciable, especially due to
lateral movement that occurs sometimes at or before failure,

5. A factor which is not reproduced in the conventional triaxial
test, and which occurs in many practical problems, is the rotation of the
planes of principal stresses during the test (3). Broms and Casbarian (6)
found that this rotation, and the intermediate principal stress, had some
effect on the deviator stress, the angle of internal friction, and the pore
water pressure of a remolded clay which they tested.

The lack of separate control of each of the three principal stresses is
definitely a disadvantage of the triaxial test. In the conventional triaxial
test the intermediate and minor principal stresses are equal, constant during
the test, and are controlled together, Henkel (18) states that the conventional
triaxial tests represent conditions where no change in the intermediate and minor
principal stresses accompanies the shearing process, and thus are of limited

direct application,
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In a triaxial test specimen the strains are larger than those that would
occur had the specimen been confined by like soil material. The triaxial
confinement does not produce the lateral strains and passive resistance occurr-
ing in nature. The question of representative lateral support then becomes
a question of whether or not the lateral pressure should be increased as
the axial strain increases, and, of course, in what proportion (47).

6. There are many factors that affect the measurement of pore pressures
in a triaxial test. One of these factors is the flexibility of the measuring
system (44). The authors give a new measuring system which has a very rapid
response time and which uses electrical pressure transducers in the measure-
ment (44).

In long duration tests, leakage through membranes, past the bindings
of membranes to the cap and base, and from valves, fittings, and seran tubing,
becomes a problem. Poulos (27) gives various recommendations to minimize
this effect and concludes that leakage may only be important in very long
duration tests,

In long duration triaxial tests, the change in the cell pressure is also
an important factor to be considered, Bishop and Henkel (2) describe a self-
compensating mercury control that accurately maintains a constant cell pressure
during tests of long duration.

Another factor that affects the results of triaxial tests is the
effect of the rubber membranes and filter paper drains used to accelerate
consolidation, Henkel and Gilbert (19) showed that the rubber membrane and
paper drains gave rise to an apparent increase in strength that is only dependent
on the stiffness of the membrane and paper. Bishop and Henkel (3) say that

due to restraints imposed on the specimen by the rubber membrane enclosing
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it and the filter paper drainage strips, a correction to the measured strength
has to be made (which is given in this reference).

Air trapped between the sample and the rubber membrane can be dissolved
in the pore water under high cell pressures and may affect the test results,

7. The condition of axial symmetry used in the triaxial test is not
the only case encountered in nature, Strain conditions affect the test
results’(8).

8. It is difficult to determine lateral deformations in the triaxial
test,

Many of the shortcomings of the triaxial test can be eliminated by
applying the measures suggested by the various investigators in this field,
gsome of which have already been mentioned in the preceding paragraphs. The
following are some other suggestions along the same line:

(A) The friction of the loading ram can be avoided if the load acting
directly on the specimen is measured, Sparrow and Beaty (34) suggest that
this be done by using a built-in electrical axial load cell, in the form of
an electrical transducer feeding potentiometer or galvanometer recorders
which would enable the automatic recording of the axial load, with no friction,
for tests with varying durations, Using Thompson ball-bushing will also
reduce the friction of the loading rod, The author, in Art, 4,3 describes a
calibration method he used in the laboratory study for this purpose.

(B) The end restraint is, in the author's opinion, the most gserious
problem of the triaxial test, and one that has not yet been solved. Rowe
and Barden (30) suggest the reduction of end friction by using a polished
aluminum alloy end platen coated with a thin smear of silicone grease and

separated from the soil sample by a circular rubber membrane. The end plates
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were larger in diameter than the soil specimen, in order to accomodate the
anticipated lateral expansion. It is claimed that this method allows the
use of shorter test samples,

(C) Triaxial tests, where the confining pressure is varied as a certain
ratio of the axial stress to which the specimen is subjected, may be utilized
(anisotropic consolidation). The change in the direction of the principal
stresses may also be accomplished (6).

(D) The leakage from the system can be minimized in long duration
triaxial tests if Poulos' recommendations (27) are followed. Among these
recommendations are the following:

(i) Two membranes should be used with a layer of silicone grease
in between,

(ii) O-ring bindings are suitable so long as the cap and base are
polished and greased before putting on the membrane and
rings. (The author found that one thicker O-ring gives a
better seal than a number of thinner ones having the same
diameter.)

(iii) Most valves and fittings in general use in the drainage

system of triaxial cells are satisfactory, but their number
should be held to a minimum,

The preceding modifications suggested in the triaxial test are believed
to eliminate many, though not all, of its disadvantages., More should be done
in this respect to make the conditions of triaxial test specimens representa-
tive, as closely as possible, of those in nature. At the present time, and
until such state is reached or new testing equipment and procedures are arrived
at, the triaxial test should be used together with other tests, keeping

their limitations in mind,
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PART B

LABORATORY STUDY

CHAPTER IV

VACUUM TRIAXIAL COMPRESSION TESTS ON DRY SAND

4,1 General

The importance of a laboratory study of stress-strain properties of
soils has been pointed out in several parts of Chaps, I, II, and III. 1In
spite of the lack of an ideal test that can be used to perform such studies,
the conclusion has been reached that the triaxial test may be utilized to
do a good part of the job at the present time. The many factors believed
to influence stress-deformation characteristics of soils have been pre-
sented in Art. 3.2, Laboratory studies should be performed to investigate
these variables and to find out the behavior of different soils under the
various conditions encountered in the field, Very few studies of this
type have been carried out, and most of the factors outlined in Art, 3.2
remain to be studied, The need for more research along this line is urgent.

The laboratory study presented here is designed to cover some of the
factors affecting the stress-strain behavior of soils and to add some more
to our present insufficient knowledge in this complicated and important
subject, Any such study is bound to cover only some of the many variables
involved, Nevertheless, these limited studies, as they accumulate, are
believed to be very helpful and valuable in forming the overall picture,

In the present investigation, quick, or undrained, triaxial tests were
used. Only one-cycle static loading was applied to the soil specimens through-
out the study.

This chapter covers vacuum triaxial tests on dry Colorado River sand.

Lateral deformation of the specimens was measured during these tests. A study
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of the stress-strain properties of the sand was made. The axial, as well as
lateral, strain characteristics were investigated. The study also included
strength properties, and volume change during shear, of the sand, The
behavior of the sand was investigated under varying density conditions that
covered the entire range of densities attainable with this soil. The con-
fining pressure was varied within a small range, representing shallow
depths, due to limitation in the amount of vacuum that could be obtained

in the laboratory. The rate of strain, or loading, was also changed within
the limits believed to be normally encountered in laboratory testing to see

the effect on the properties of the sand.

4,2 Soil Used

The soil selected was a clean, dry sand known locally as Colorado
River sand. This is a light brown sand obtained from the banks of the
Colorado River at Austin, Texas. When examined under a magnifying lens,
the sand particles were found to be rather subangular in shape and had a
somewhat rough texture, Mineralogically, the sand grains were primarily
quartz, with some fragments of igneous, metamorphic and sedimentary rocks,
Moreover, the sand was found to be quite rich in silica.

The sand was air dried, then sifted on a "Rotex'" sifter style No, 12,
with a pulley speed of 520 to 560 rpm. The sifter had two U. S. Standard
sieves, No, 20 and No. 200. The output, passing sieve No. 20 but retained
on sieve No. 200, was collected for use in this study. The sand was kept
at room conditions of temperature and humidity, The hygroscopic maisture
content of the sand was 0.12%.

A sieve analvsis was run to determine the grain size distribution of
the sand, The results of the mechanical analysis are shown on a semiloga-

rithmic plot in Fig 3, together with grain size distribution curves of the
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other soils investigated, The resulting curve shows that the soil used can
be classified as a uniform fine sand,
The specific gravity of the sand used was found to be 2,67. Both
specific gravity and sieve analysis tests were performed in accordance with
usual engineering practice and local procedures at the soil mechanics
laboratory of The University of Texas (9).
The sand was tested at three different densities. The highest density used
was 108,26 p.c.f, which was near the maximum that could be attained. The
lowest was 94 p.c.f, which was almost the minimum density that could be
obtained with the sand being tested, The third density was in between and

equal to 102 p.c,.f. to represent the medium density condition.

4.3 Testing Equipment

The triaxial cell used in this study was a Clockhouse cell model T150
(manufactured by Clockhouse Engineering Ltd., England). The lucite cylinder,
forming the pressure chamber, was removed and the base of the cell was
fitted so that it could be connected to the vacuum source, This connection
could either be opened or closed, using the valve at the base of the cell,
and it formed one branch of a three-way outlet from the vacuum source.

The second branch led to a bleeding valve, which together with the one used
to open and close the vacuum source, could be utilized to control the amount
of vacuum to which the sample was to be subjected. This vacuum acting on

the sand specimen through its base, represented the all-round confinement

Os , analogous to the lateral pressure in the conventional triaxial test.

The third branch of the three-way outlet was connected to a mercury manometer
measuring the vacuum which the sample was subjected to. The test set-up is

shown in Fig, 4.
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The latéral deformations at the mid-height of the test specimen were
measured using four dial extensometers touching the circumference of the
specimen and rigidly attached by clamps to the steel rods forming the outer
part of the cell, as shown in Fig. 4. The fixed clamp holders are cast-iron
clamps purchased from Curtin Company in Houston, Texas (model No. 4113).

The extensometers are Ames 312.5 Jewelled with a 1/2-in. travel, purchased
from B. C, Ames Company, Waltham, Massachusetts. These extensometers were
fitted at the end of their stems with a 1/2-in, diameter brass disc of
1/16-in, thickness with which to bear on the sample. These discs were used
to prevent any cbncentration of stresses at the points of contact between
the specimen and the stems of the extensometers., The sensitivity of the
extensometers was 0:0001 in. The four dial gauges were placed so that each
two would be facing each other along the same straight line, to measure one
diameter at the mid-height of the specimen, and at the same time be perpendi-
cular to theother two, as shown in Fig 4. This means that two perpendicular
diameters were measured at the middle portion of the sample during the test.
The axial deformation of the sample was measured by an extensometer of the
same type but which had a travel of 2 in. and a sensitivity of 0.001 in,

It was firmly attached to the loading machine as shown in Fig 4,

The loading machine used was of the constant-rate-of-strain type
(manufactured in the laboratory using a screw jack from the Duff Norton
Manufacturing Company, Pittsburg, Pennsylvania). The machine is motor operated
with a gear to control the rate of loading. Four speeds of loading were used
in this investigation. These were 0.02, 0.04, 0.08 and 0.16 in. per minute,
which corresponded to rates of strain of 0.625, 1.25, 2.5, and 57 per minute

respectively (with a 3,2 in, height sample). The applied load was measured




by a double proving ring attachment (model no. 2126, Soiltest, Chicago),
fitted to the upper part of the machine, as shown in Fig, 4. The
accuracy of load measurement was 0,08333 1b,

The friction of the loading rod of the triaxial cell was checked
by means of a calibrated load cell, The load cell was placed in the
position of the specimen and loaded through the rod, using the machine
described above. Readings of the proving ring, measuring the load at
the top of the loading rod including any friction, and of the calibrated
load cell, measuring the load at the tip of the rod excluding friction,
were taken simultaneously throughout the entire range of loads that
could be measured by the ring. These two readings were then compared
to determine the amount of friction, if any, at various load levels.
The two readings were almost the same throughout the entire range.
The tendency was, however, for the friction to increase as the load
was increased, but the maximum friction value observed, that is the
maximum difference between the two readings, was less than 1,0% for
the ultimate load that could be obtained with the proving ring used.
The friction was much less, almost zero actually, for the lower loads
encountered in the laboratory investigation. To be sure that the measured
friction was the real value, the calibrated load cell was loaded directly
by the proving ring and both readings again taken. Both readings were
found to be almost exactly the same indicating that both the ring and
calibrated cell are correct, Thus it was concluded that for all
practical purposes of this investigation the rod friction can be neglected
as it did not amount to any appreciable value,

It should be pointed out that the above procedure may be used to

eliminate the effect of friction of the loading rod in the triaxial
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test. After determining the amount of friction at various load levels,
as described before the net load during the test can be obtained by
subtracting the friction from the measured load. This is another way

to take care of this particular limitation in the triaxial test, besides
the methods described in Art. 3.5. In conventional triaxial tests,

the friction of the rod can be checked, while the cell pressure is
applied, by using a proving ring placed inside the triaxial chamber

(instead of the calibrated cell.)

4,4 Preparation of Test Specimens

The equipment used in sample preparation consists of the base of
the triaxial cell and the cap, a thin rubber membrane of the proper
size, a small vibrating platform, a tamping rod, a funnel, a forming
jacket (split mold) and O-rings and porous stones of the proper size.
The forming jacket consisted of a cylindrical tube, split longitudi-
nally in two halves which can be fastened together by C-clamps. The
split mold was lined from the inside with a wire mesh, and the inside
clear diameter of the mold was 1.44 in, with a height of 5.25 in. The
forming jacket also had two opposite holes through which vacuum could
be applied and distributed through the wire mesh,

The prepared sand specimens were 1.4 in. in diameter and 3.2 in.
high. To prepare a specimen having a certain density, the weight of
sand necessary to produce that specimen, with the required dimensions,
was determined. This weight of air-dried sand was then divided into
eight equal parts with each part representing one layer. The sample
was prepared in eight layers to assure uniform density conditions

throughout.
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The rubber membrane (0.021 in. thickness) was placed around the base of
the triaxial cell and the bottom porous stone and tied tightly with two O-
rings. The two halves of the forming mold were placed around the rubber
membrane, while holding the loose end of the membrane vertically upward,
then fastened tightly together using the C-clamps. The upper end of the rubber
membrane was turned down over the edge and on the outside of the forming
jacket, The membrane was made to fit flush against the inside surface of the
mold by attaching a vacuum to the external ports of the jacket and applying
longitudinal tension to the membrane, smoothing it to a cylindrical surface,
before any soil was placed in the mold.

The next step in the preparation of the sand specimen depended on the
density to be achieved, Three densities were required, as mentionéd in Art.
4,2, The specimens having maximum density were prepared by placing the base,
with the forming jacket assembly described above, on a small vibrating platform
(made by J. Yates Mfg, Company, Chicago). The sand was then placed into the
mold in eight equal layers, that had already been weighed and prepared as
described before, Each layer was placed through a funnel at a constant height
(6.0 in,) which was moved around while the sand was being poured so that the
entire cross-section of the mold might be covered uniformly with the sand.
Each layer was then vibrated and tamped with a rod for a few seconds. The
vibration time, for the eight layers starting from the bottom, was 25, 30,

35, 40, 45, 50, 55, and 60 seconds respectively (this time was arrived at by
trial). The blows for each layer were distributed uniformly over the area of
the specimen, The number of blows was more for the upper layers and decreased
regularly to the bottom, The specimens with the medium density were prepared
in the same manner except that no tamping was applied in sample preparation,

only vibration, and that the vibration time in this case was 3, 4, 5, 6, 7,
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8, 9, and 10 seconds for the eight layers respectively, from the bottom up,
The specimens with the lowest density were also prepared in the same way except
that no rodding or vibration was applied, that is, the samples were prepared
by pouring sand into the mold from a fixed height (6.0 in.). This method is
believed to yield specimens that have uniform density throughout,

The next step was to level the top of the sand specimen, as much as
possible, using the tamping rod. The upper smooth lucite plate was then put
on the leveled sand surface and rotated slightly to obtain good seating. The
upper head was placed and the membrane rolled up around it and securely tied
to the cap by O-rings. The upper head was aligned to a horizontal position
allowing as little movement as possible. Vacuum was applied to the specimen
through its base and cut off from the jacket, The applied vacuum was then
increased to the desired testing pressure and the forming jacket removed.

Measurements of the specimen were then made. Several measurements of the
diameter at the top, middle and bottom of the sample were taken, The
height of the specimen at four perpendicular positions was also measured.
The average of the several readings was considered to be the dimensions of
the specimen. All measurements were made to an accuracy of 0.01 in, 1In
getting the diameter of the specimen, the diameter plus the rubber membrane
thickness were measured and then the thickness of the membrane subtracted
from the reading to give the actual diameter of the sample, The height was
determined by measuring the total height of the specimen, porous stone, base,
upper lucite disc, and cap. Knowing the thickness of all other items, the
height of the specimen could be determined. If the diameter of the specimen
was not 1.4 in. or its height not 3.2 in., the specimen was rejected. After

sample preparation, the specimen was not moved any more than necessary.
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As described above, the specimen density and dimensions were strictly
controlled in all tests. This was done by determining the weight of sand
that would give a cylindrical sample 1.4 in, diameter and 3,2 in. high and
which would have a certain density (weight = volume times density) then
forming the specimen with this amount of sand and checking its dimensions,
It should be noted that the length-to-diameter ratio of the specimens was

2,286, (which agrees with Taylor's recommendations as described in Art. 2.5).

4.5 Test Procedure

The object of these tests is to determine the stress-deformation and
strength-characteristics of dry Colorado River sand subjected to shearing
stresses produced by varying the principal stresses being produced by the
application of a vacuum to the sand specimen through its base.

After the specimen was prepared, as described in Art. 4.4, the cell was
put together and carefully placed on the loading machine, with the sample
ingside. The four gauges, which measured lateral deformations, were than
fastened in place, as shown in Art, 4.3. The loading rod was lowered to
touch the ball on the top of upper cap that rests on the sand specimen, The
loading head of the testing machine, with a proving ring attached to it, was
brought down till the lower part of the proving ring came in contact with the
steel ball on top of the loading rod. The proving ring, axial deformation dial,
and four lateral deformation extensometers, were then set to zero, after
checking the mercury manometer to make sure that the exact vacuum was acting
on the sample. The loading was then started and the vacuum kept constant
during the entire test,

During loading, readings of the proving ring and the five extensometers

were taken every 0.0l in. of axial deformation. Loading was continued until
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failure was reached and the specimen bulged to a great extent and, or, tilted.
The loading was then stopped and a sketch of the failed specimen was made.
The vacuum was disconnected and the apparatus dismantled.

The testing program was designed to include 48 tests. One third of this
number had specimens of 108.26 1b/ft® density, the second third of the specimens
had a density of 102 1b/£t3, and the specimens in the remaining 16 tests had
a density of 94 1b/ft3. For each density &4 tests were run at a rate of
strain of 0.625% per minute, 4 other at 1,25% per minute, 4 more at 2.5% per
minute, and the last &4 at a rate of strain of 5% per minute, For each density
and rate of strain, specimens were tested at the following four vacuums,

2.32, 4.64, 6,95, and 8.69 psi, which corresponded to 12, 24, 36, and 45 cms
of mercury respectively. Each one of these 48 tests was repeated twice and
the results of both tests averaged, This average was then considered in the

final analysis.

4,6 Results and Discussion

In this article a presentation of the test results will be made. Also
a discussion of these results and their significance will be presented. The
assumptions made will be given and their degree of accuracy considered.

A. Computation of Stresses and Strains

The axial load acting on the test specimen at any time, in excess of

the confining pressure 0z , was obtained from readings of the proving ring.
This load will be referred to here as P . The deviator stress O, is
computed by dividing this load by the area of the specimen A at that time,
It is defined as the difference between the major and minor principal stresses,

that is oy - O3 .




The area of the specimen at various strain levels, used to compute the
deviator stress, was obtained from readings of the lateral deformation dials
at the mid-height of the specimen, Photographs of the specimen at various
strain levels revealed the fact that the specimen does not deform laterally
at its ends because of the friction developed there between the sample and the
plates, that is, end restraint. The photographs also showed that the maximum
lateral deformation of the specimen was about its mid-height., Thus the assump-
tion was made that the average lateral deformation of the sample would be the
average of the maximum value at its mid-height and the minimum value (zero)
at its ends., This means that the average lateral deformation was taken as
half the value at the middle of the sample. This assumption is not absolutely
correct but is believed to approximate actual conditions.

The lateral deformation of the specimen at its mid-height was taken to
be twice the mean reading of the four extensometers measuring such deformation
at any instant, The use of the mean value of four perpendicular readings would
reduce the error arising from the possibility that the sample when deformed
does not remain a perfect cylinder. The average lateral deformation of the
specimen 4; would then be equal to this mean reading. The average diameter
of the sample at any strain level was obtained by adding the original diameter
to the average lateral deformation. Thus at any instant during the test the

following quantities could be defined:

Axial deformation I in.
Axial strain € = AO/Hy in,/in.
(Ho being the original height of the specimen in,)
Lateral deformation 4, = (&, +4 +4 + 4 )/4 in,

L, 13 1s 1
Diameter D = Dy + 4 in.
(Dg being the original diameter of the specimen in.)
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Area A = =D in.?

4
Lateral strain €, = b /Dy in./in.
Axial load P 1b.
Deviator stress o) = P/A 1b,/in. in.
Modulus of deformation E = OA/e 1b./in. in,
Lateral strain ratio B o= €/¢€ in./in.
Height H = Ho - A in,
Volume V = AH in.®

The above values were determined on the assumption that the sample while
deforming remains perfectly cylindrical in shape and that the deformation,
both in axial and lateral directions, are uniform and represented by the average
values, The average axial deformation is determined directly by an extensometer
which measures the axial shortening of the specimen.

As mentioned above, the stresses in this study were determined using
areas that were actually determined by lateral deformation measurements, It
was hoped that in spite of the far-reaching assumptions made in area computations,
the results would be more realistic than those obtained by the conventional method.
In the usual triaxial test, on dry sands, areas are determined on the assumption
that the cylindrical shape continues and the volume of the specimen remains
constant during the entire test, an assumption which is known to be incorrect
due to the fact that volume changes and bulging of the sample at its mid-height
do occur and become of appreciable magnitude at high strains., Taylor (38)
shows that the assumptions made in computing the cross-sectional areas of the
triaxial test specimen at any strain, namely constant volume and cylindrical
shape, do not introduce objectionable errors up to a strain of 7% for tests on

saturated clays., He also stated that this is particularly true for saturated
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specimens tested under high confining pressures. The difference in results
between the conventional method of stress computation and the procedure developed
in the present study will be discussed later on.

It must be pointed out here that the results of this investigation showed
that the circular cylindrical test sample did not remain so during the entire
test, The sample bulged more at its mid-height, Also the cross-section at this
level did not remain a perfect circle. In most tests the sample bulged more at
two perpendicular sides than it did on the other two, but the two measured
diameters were nearly the same,

B. Strength Characteristics

Coulomb gives the shear strength of a soil T by the formula:

T = cHotand. . . . .. L e e e e e e e e e e e e e (8
where

¢ = cohesion

O = normal stress

® = angle of internal friction,

For dry clean sands the cohesion is equal to zero. TFor saturated clays,
under conditions of no volume change during shear, ¢ becomes equal to zero
(based on the total stress concept).

In discussing the strength of a soil, it is important to specify the
criteria used in defining failure and strength. Commonly, in triaxial tests, the
strength is measured either by the maximum deviator stress which a specimen will
withstand, or by tﬁe deviator stress at a given value of axial strain (usually
20% for foundation engineering purposes).

The strength of a dry sand depends on the friction and interlocking between

the particles. 1In such a single grained structure the degree of mobilization

55



of internal friction depends upon the shape, size and texture of the particles,
the grading of the sand, the confining pressure, and the movement of the grains,

The angle of internal friction of dry Colorado River sand was determined,
for the various conditions of density and rate of strain, using the results of
the vacuum triaxial tests interpreted by Mohr's circles. A summary of the results
of all tests, as far as the angle of internal friction is concerned, is given
in Table 1. The mohr circles and envelopes are given in Appendix B.

Table 1 shows that the angle of internal friction of the sand increases
as the density increases, The increase in ¢ with density, however, is more
at the lower ranges of density than it is with the higher density values. The
reason for this phenomena is believed to be the bigger movement and greater
particle interlocking, when the sand is sheared, in the lower density range.

The range of rates of strain which were studied had some effect on the angle
of internal friction, but there were no major variations, The interesting
observation, though, was that the influence of the rate of strain was greater
for dense than for loose sand. However, it was concluded that the use of any
rate of strain, within the investigated range, in the laboratory determination
of the angle of internal friction for granular soils is permissable. 1In the
present study the maximum variation encountered in the angle of internal friction
due to differences in the rate of strain used was in the order of 4 per cent
which is allowable, Variation in the results of tests with the same rate of
strain are thought to be in the same order,

The specimen in each test was loaded until failure was well developed.

In the case of samples with high and medium densities, a well defined failure
plane was usually developed for all pressures and rates of strain. This is known
as a general shear failure. In the case of specimens that had low densities

(loose sand) the failure was either by bulging, generally at low pressures and
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TABLE 1
VALUES OF THE ANGLE OF INTERNAL FRICTION ()]
In Degrees At Different Densities
And Strain Rates for Dry

Colorado River Sand

Rate of Strain Density Density Density
94.00 102.00 108.26
in per cent per minute pcf pcf pef
0.625 37.0 45 48.2
1.250 37.2 45,2 49.0
2,500 37.4 45.4 49,6
5.000 37.5 45.5 50.0
Average Value 37.28 45,28 49.20

25



rates of strain, or sometimes by bulging and very much undefined failure planes
for the higher range of pressures and rates of strain., This is known as local
shear failure.

C. Axial Stress-Strain Characteristics

The effect of demsity, confining pressure and rate of strain were
studied. It was found that the effect of the limited range of rates of strain
investigated was not pronounced. It was therefore decided that only the results
of tests with the maximum and minimum studied rates of strain be presented.

The stress-strain curves for dry Colorado River sand are shown in Appendix
A. 1In general the stress-strain curves for the tested sand had an initial part
that was approximated by a straight line up to a point, then it curved, The
deviator stress increased to a maximum and then decreased again,

The confining pressure had an obvious effect on the stress-strain properties
of the sand. The initial linear part of the curve and its slope, the deviator
stress at any strain level, and the maximum deviator stress generally increased
as the confining pressure got higher, Also the deviator stress decreased more
after reaching its maximum value. This pattern was more pronounced for dense
than for loose sand conditions,

The density of the sand also had a big effect on the stress-strain curves,
The same pattern of changes discussed in the previous paragraph occurred as the
density increased and was more pronounced for the higher confining pressures,

The limited range of rates of strain investigated had only little effect.
Using any rate of strain, within the investigated range, in laboratory testing
would produce only small variations in the results. Although the results are
not totally conclusive, it can be stated that the same pattern of variation
discussed above may probably develop as the rate of strain is increased. The

effects of the rate of strain may generally be expected to be more for higher
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densities and confining pressures, Although the rate of strain had only minor
effects in this study, it is firmly believed that to draw final conclusions in

this regard, more tests must be performed at higher rates of strain that ultimately
reach the dynamic load condition,

The observations mentioned in the preceding paragraphs will be illustrated
by a number of tables that will be presented in the fpllowing pages and that
summarize the axial stress-strain behavior of the tested sand under the various
conditions investigated, It should be pointed out here that there was some
deviation in the results of the various tests from the pattern than developed,
This is expected due to the various factors that can introduce some error in the
results of laboratory determination of stress-strain properties of soils. Among
these factors are: (i) variation in density and uniformity conditions from one
specimen to the other and within the same specimen, (ii) human errors in recording
the various readings taken, (iii) confining effects of the rubber membrane
and extensometers measuring lateral deformations, (iv) seating error (see
Appendix A), (v) minor changes in confining pressure and speed of loading during
the test, and (vi) the measurement of the small deformations at low levels of
strain in the very beginning of the test may not be accurate due to the fact that
the extensometers used are not sensitive enough for these very small initial
deformations (16).

Table 2 gives the axial strain at which the initial portion of the stress-
strain curve is no longer a straight line, This strain will be called the
initial axial strain and given the symbol €, . Due to seating errors, no exact
trend could be detected. Generally, however, it can be seen that the initial
strain decreased as the density and confining pressure was reduced and as the

rate of strain was increased,.
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Table 3 shows the axial strain at which the maximum deviator stress occurs
(which will be denoted €100 ). This strain was found to decrease generally
as the density was increased. No general trend could be detected for the
variation of €, with confining pressure and rate of strain because of the
limited range investigated. Generally, however, it would be expected that
€100 would probably be more for lower confining pressure and rates of strain.

The ratio of €;/€;40 is presented in Table 4, This ratio generally
increased as the density increased, and decreased as the confining pressure
and rate of strain increased. The small number of variations from this well
developed pattern could be explained by the reasons given earlier,

The maximum deviator stress GA..x is given in Table 5. The value of
this stress increased with the increase in density, confining pressure, and
rate of strain. The increase in stress with rate of strain was more for dense
sand and higher confining pressures,

Table 6 shows the ratio between the deviator stress at which the stress-
strain curve ceases to be straight line oA1 and the maximum deviator stress.
This ratio increased as the density, rate of strain, and confining pressure
increased. This indicates that the initial straight line portion of the stress-
strain curve increased with the increase in these three variables, The
deviator stress at an axial strain of 0.1 in./in. ( cAo-l ), given in
Table 7, also generally showed the same pattern of variation mentioned above.

e i i ¢} . . .
The ratio between this stress 8.1 and the maximum deviator stress is pre-

sented in Table 8. This ratio seems to be generally decreasing as the density,
and confining pressure decreased. The effect of the investigated rates of
strain on this ratio was not pronounced, but generally it can be said that the

ratio cAc /GA decreased as the rate of strain increased. The pattern of
« 1 na X
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variation of this ratio indicates that as the density, confining pressure, or
rate of strain increased, the stress-strain curves peaked more,

The deviator stresses presented above were computed using areas determined
from actually measured axial and lateral deformations (as previously explained).
The stresses computed using the conventional method of assuming no volume
changes during the test were also obtained. When compared, these two stresses
were found to have values that are very close, The differences between these
values depend on the differences between the areas determined by both methods.
It was noticed that the maximum stress in both cases occured at the same axial
strain, The assumption of no volume change used in the interpretation of
triaxial test results is therefore believed to be justified at low levels of
strain. As the axial strainincreased the discrepancy between actual and assumed
areas became more,

D. Modulus of Deformation

The modulus of deformation E , in the author's opinion, is a soil
property that represents axial stress-strain behavior. The modulus of deformation
is defined as the secant modulus at any point on the stress-strain curve, and is
equal to the ratio of the deviator stress to axial strain at that point, For
a perfectly linear stress-strain curve there will be a unique value for E .

For a non-linear stress-strain curve, however, E will have various values,

One of the objectives of this laboratory study was to determine the pattern
of variation of the modulus of deformation for the various soils studied under
one-cyclic static loading, as determined by quick compression triaxial tests.
The factors, believed to influence E , that were investigated in this chapter
are: the level of strain, the level of stress, the density, the confining

pressure, the rate of strain, and the strength of the sand,
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The level of strain had a very obvious effect on the value of the modulus
of deformation as shown in Figs 5, 6, and 7. 1In these figures the initial
parts of the curves do not appear, The values of the initial tangent modulus
will be discussed later, however, Each curve, in any of these figures, represents
the average results of two Edentical triaxial tests, It can be seen that the
modulus of deformation for the tested sand, at any rate of strain, density, and
confining pressure, decreased as the strain increased. This decrease is very
rapid in the lower strain levels and the rate of decrease becomes less at the
higher levels of strain,

The effect of the confining pressure 03 was also apparent. The modulus
of deformation of the sand at any rate of strain, density, and strain level
increased as the confining pressure got higher, The density of the sand also
had the same effect, that is, the value of the modulus at any rate of strain,
confining pressure, and strain level increased with the increase in density.
Generally, this increase due to density was more when the density increased from
94 to 102 pcf than it was when the density changed from 102 to 108.26 pcf.
This means that the increase in the modulus of deformation with density was more
for loose sands than it was for medium to dense sands.

The rate of strain had some effect on the value of the modulus of deformation.
For the limited range of rates of strain tested, however, the effect was not
large. This effect may be expected to increase at higher strain rates., Generally
the value of the modulus, at any density, confining pressure, and level of
strain, was higher for the higher rates of strain. The effect of the rate of
strain was more pronounced generally at higher densities and at higher confining
pressures,

The modulus of deformation of sand, in any one test, stérts with a maximum

value which is either the slope of the initial linear part of the stress-strain
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curve, or the initial tangent modulus to the curve, If the stress-strain curve
is linear at its beginning, the value of the modulus will remain constant for a
certain strain, until the linear portion begins to curve. The modulus will then
decrease with increased strain at a rate that becomes smaller as the level of
strain increases, This rate of decrease is'higher for dense sands than it is
for loose sands. The reason is that for dense sands the stress-strain curves
peak rapidly to a maximum deviator stress and then the stress decreases, with the
increase in strain, to a residual value, In case of loose sands, however, the
peak of the stress-strain curve is less, occurs at higher strains, is not as
well defined in many instances, and the decrease in stress after its maximum
value is reached, if any, is much less than for dense sand. The same pattern

is also developed, to a lesser extent, for higher and lower confining pressures,

Table 9 gives the values of the initial tangent modulus of deformation Eq
for the various densities, confining pressures, and rates of strain investigated,
These values represent the slope of the initial linear portion of the stress-
strain curve. The values presented show great scatter due to the big effect
of the seating error encountered in some tests. Generally, however, one might
expect the initial tangent modulus to increase with increased density, confining
pressure, or rate of strain. This pattern is not fully developed in Table 9,
but would have been if the seating error was completely eliminated,

The modulus of deformation at a point on the stress-strain curve where the
deviator stress is equal to half its maximum value will be denoted by Eso ,
and that at the maximum stress E;qo . Tables 10 and 11 give the values of
these moduli for the various conditions studied. Again some scatter in the shown
values is apparent but the general trend is obvious. These values generally

increase as the density, confining pressure, and rate of strain increase. The
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results presented also show that for the investigated range, the effect of the

rate of strain was not conclusive.

The values presented in Tables 9, 10 and 11 point out that the level of
stress has definitely a tremendous effect on the modulus of deformation of
the sand. This fact is shown in Fig 8 where the modulus of deformation is
drawn versus the factor of safety* for various densities confining pressures,
and rates of strain. The factor of safety in the present study is defined
as the ratio of the maximum deviator stress to that at which the modulus is
computed. For example, E;poo 18 drawn at a factor of safety equal to one
and Eso at two and so on. The factor of safety as defined above represents
the level of stress. It can be seen from this figure that the modulus of de-
formation increased as the factor of safety increased, that is as the level
of stress was reduced, till it reaches a maximum value (the initial modulus.)
The rate of increase, however, was higher at the lower factors of safety and
decreased as the factor of safety increased.

Figures 9 and 10 show the effect of the level of stress in the form of
non-dimensional curves. In these figures there is some scatter in results
due to the various factors, discussed before, that may effect the stress-
strain properties in general, and also because we are using various rates of
strain in drawing these points (due to the little effect of the rates of
strain used). The modulus of deformation E in this case is divided by the
confining pressure O3 tan ¢ in Fig 10 to give the required non-dimensional

curves,

.

The term '"factor of safety'" as used here has different significance than
ordinari v used in engineering practice. 1In this investigation the term is used
as an indication of the level of stress at a point on the stress-strain curve

with respect to the maximum stress.

T2




00°¢S 00°8¢ 00°%¢ 00° 0% 00°9¢ 09°¢e [4 24
0S°LE 99 66 00°2z¢s 00°9% Y% °6€ 00°0¢ ¥9'Yy
00°¢L 00°%8 00°0¢L 00°09 6€°2Y 00°8S S6°9
00°98 00°001 ¢9°/.8 00°96 00°69 S1°6¢ 69°8
Jod Jod 3od Jod 3od 3od
97 °801 00°201 00°%6 97 "801 00°z01 00" %6
L318ua(q £318U9(Q £318U9a(Q L3 Tsua(Q £31sua(Q K31suaq 1sd
(%0)

"UTR X2d %000°S UTERIIS JO 9By

‘UTW I3d 9%679°0 uTeIlg JO 83ey

9anssaid Buturyuo)

(01 X ISd ul

(*a)

6 ATIVL

(pues a9aT1y opeioTO) £aq)

UOT3IBWIOIAQ JO SNINpOK Ter3IIul

73



67°1¢ €1°€T s1°01 LS°22 %1°Lt 00°61 (404
L9°9¢ L9°1% 0z°S1 98° 0% 1A IV ANA S %9°Y%
00°9¢ 00°SS rA £% €€ °8S %' LE Y ARYA $6°9
G6°99 IXANAS 8%°¢ZS €1°8L Z1° 08 00°8¢ 69°8
3od 3od 3od 3od Jod 3od
9¢°801 00°Z01 00" %6 97801 00°201 00°%6
L31suaq K318suaq Ka18suag K318suaQ L31suaQ L31suaQ 1sd
(%0)
‘utW 3ad %2000°G uleals Jo 238y ‘UTR 194 %G6Z9°0 uTeals jo 93ey sanssai1d SuturIuvo)

(pues 19aTY ope1010) KiaQ)
,01 X Isd ur (0%7) 883138
1038TAS(Q WnWIXEW 29Uyl JTeH 3e uorlewioyag JO SNINPON

01 FTIVL

Th



6%°9 SY°¢ %6°0 167y 0L°s 9,.°0 [4 94
88°¢ SEL 9% 1 17°8 €8°9 6S°1 79y
6%°11 ¥S'ET se’¢e €1°¢l 8€°8 S1°¢ $6°9
EV°ET 68°11 €L°C €9°11 €T 11 7°e 69°8
yod 3od 3od 3od Jod 3od
92 "801 00°201 00°%6 9Z°801 00°Z01 00°%6
£318U9(Qq K318U9(Q £318uaQg £3185U9Qq £31suaq £31suaq 1sd
(%0)
"UTK 194 %000°G ureals jo ajey ‘UTH 134 %629°0 wﬂw&um Jo 93ey 2anssaad Suturjuon

(pues 19ATY opeioyop Laq)
gOT X ISd utr (°07g) ssailg
1038TAS(Q WNWIXEH 3B UOTIJRWIOISQJ JO SNINPOR

1T IT19VL

™



MoDULUS OF DEFORMATION (EY In PS.L

4000

2000F

1000 ¥

e R.S.: 0.625 % per min.
® R.S.:= 5% per min,

()

(1) oy = 8.69 pai.
@) oy * 2.32 pal. e

{a) DENSITY = 94 p.cf.

:

3000F

2000

1000

T

e R.8.: 0.625 % per min.
® R.S.* 3% per min

() oy* B8.69 p.s.b.
2) oy = 2.32p.si

(b) DENSITY = 108.26 p.ct.

| 2 3
FACTOR OF SAFETY

DRY COLORADO RIVER SAND

FIG. 8. EFFECT OF THE LEVEL OF STRESS ON
THE MODULUS OF DEFORMATION

76




DRY COLORADO RIVER SAND
1400 ¥ X RS. = 85 % per min. = DENSITY = 94 pec.f.
. RS. = 0.625% per min. ~ DENSITY : 94 p.c.f,
A RS. = 5% per min. - DENSITY = 108.26 pcf.
[ ] RS. = 0.625% per min. ~ DENSITY = 108.26 pedf.
12004
&
4
10004
800+
bﬂ
~
w
600+
4004
X
;((, — - — DENSITY : 94 pcf.
2004 4 DENSITY = 108.26 p.cf.
/3
/
/
X'/
o + + + $
1 2 3 4

FACTOR OF SAFETY

FIG. 9. EFFECT OF THE LEVEL OF STRESS ON

THE MODULUS OF DEFORMATION

(NON - DIMENSIONAL CURVES)

7




1200

(o) DENSITY = 94 pcf.

800 ¥

4001

o3 A\X *®«

1200 ¥
(b) DENSITY = 108.26 pcf.

E/( o, tan ¢)

800 ¢

4004

«eM» X

o4

o 1 2
FACTOR OF SAFETY

DRY COLORADO RIVER SAND

e« R.S. = 0.625 % per min.
X R.S. = 3 % per min.

FIG.10. EFFECT OF THE LEVEL OF STRESS ON

THE MODULUS OF DEFORMATION
(NON- DIMENSIONAL CURVES)

78

y§ B




E. Lateral Strain Ratio

The author believes that the lateral deformation behavior of soils
can be well represented by what was termed the lateral strain ratio
The lateral strain ratio is defined to be the ratio of the lateral strain to
the axial strain of the triaxial test specimen at any time during the test.
The lateral strain is obtained by dividing the lateral deformation, of the
cylindrical test specimen, by the original diameter of the sample, while the
axial strain is taken to be the axial deformation divided by the original height,
As previously discussed (in Art. 4.6-A) the average axial deformation is measured
directly by the axial dial extensometer, but the average lateral deformation
is taken to be half the value at the mid-height of the specimen (which is
equal to the mean value of the four readings of the lateral deformation exten-
someters mounted at the middle of the sample.)

It should be pointed out here that for an elastic material the lateral
strain ratio is nothing but Poisson's ratio which in this case has a single
unique value. This is not the case, however, for soils and other non-elastic
materials,

Figures 11, 12, and 13 show the effect of the level of strain, confining
pressure, density, and rate of strain on the lateral strain ratio. It is
obvious that the level of strain has a tremendous effect on the value of [

As the strain (at any one density, confining pressure, and rate of strain)
increased, the lateral strain ratio also increased. This increase, however,
was more in dense than in loose sand. With the higher densities the value of

K decreased slightly, in some tests, at higher strain levels and after failure
had started. It should be pointed out, however, that this reduction occurred

only after failure had begun and the deformation of the specimen became excessive



LATERAL STRAIN RATIO (u)

0.60

0.5% ¢

0.50 1

045 ¢

0.401

0.35 1

(@) R.S. = 0.625 % per min.

o.30f/ () ====- o5 = 8.69 psi

/ / (2) =—smm oy = 6.95 pal
/,

o254 // (3) e —= oy = 4.64 psi
/
/ (4) ——— oy = 232 pai

020}

0.15 4 4 $ 4 4

0.50

0.45¢

0.401

0.35¢1

ol A/

) s = qy

8.69 p.s.i.

(2) =——-— oy, = 695 psi.

o.2sd (3) — — oy = 4.64 pa.i.
() = o3 = 232 psi.
0.2
0.15% 4 + + 4 y
o 002 0.04 008 008 o0
AXIAL STRAIN (&) IN IN/IN.
DRY COLORADO RIVER SAND

DENSITY = 94 p.c.f.

FIG.Il. LATERAL STRAIN RATIO vs. AXIAL STRAIN




()

LATERAL STRAIN RATIO

0.7 1

0.6 ¥+

05 1

oat

0.3

B 7'1{___ _______ @)
- =
/ -
Z ()
y
,
/I
/// (6) R.S. = 5% per min.

(1) === oy 8.69 ps.i.
(2) ~—o e oy: 6.95 p.si.
17 (3) =——— 0oy: 4.64 ps.i

(4) e 0y 2.32 ps.i.

(D) R.S. =

0.625 % per min.

’
0.4 1 /’ /
/ / () ———=—o3t 869 ps.i
l ’
/ (2) == ¢ o oz 6.95 p.s.i.
o3 / ! % p-s
. (3) —— —— 03° 464 p.s.i.
0.2 ./ 4) oy 2.32 p.si.
0.1
o + + + * *
0.02 004 0.06 0.08 0.10
AXiAL STRAIN (€} IN IN./IN.
DRY COLORADO RIVER SAND
DENSITY = 102 p.c.t.

F16.12. LATERAL STRAIN RATIO vs. AXIAL STRAIN

81



LATERAL STRAIN RATIO (u)

—— T e~
e | / - T
\
o.eo} T~
0.50 (4)
,/’ (0) R.S. = 5% per min.
0.40 //
0.301
0.20 /
o.lo-FI
0 + + + + :
——— &
0.80¢ /'/ /7'.?.\ \(3)
/0/ (2)
o.70¢4
/ TSI
~~ (1
0.604
0.50- (b) R.S. = 0.625 % per min,
0.404
0.30¢%
o.20f
)
!
'
h
0.02 0.04 0.06 008 0.10
AXIAL STRAIN (¢) IN IN./IN.

=== (1) ay: 8.69 p.s.i. —— ——(3) oy = 4.64 ps.i.

—+——(2) oy = 6.95 p.s.i (4) oy = 2.32 p.s.i.

DENSITY

FiG.13. LATERAL STRAIN RATIOS FOR DRY
COLORADO RIVER SAND

108.26 p.c.f.

82




due to bulging, tilting, and movement along the failure plane, Thus less weight
should be put on the value of | at these higher strain levels where failure
has already progressed to a far point,

Figures 11, 12, and 13 also emphasize the effect of sand density on the
lateral strain ratio, The value of p at any strain level, confining pressure
and rate of strain, increased at higher densities. The only exceptions to this
rule occurred at very small strains where the lateral strain ratios for loose
density conditions were sometimes higher than those for dense sands. The
effect of density is also demonstrated in Tables 12 and 13. From these tables
it can be seen that, generally, the value of b , at any stress level, confining
pressure, and rate of strain, increased with the increase in density.

Tables 12 and 13 also show the effect of the level of stress on the lateral
strain ratio. These tables reveal the fact that ¥ increased with the decrease
in the factor of safety (representing an increase in the stress level).

Although the presented results point out the effect of the confining
pressure on the value of u , no regular pattern could be developed in this
regard, for the limited range of vacuums investigated. The only conclusion
that might be reached with respect to the effect of the confining pressure is
an average curve that would represent the value of W in the entire range of
pressures studied, Some of the factors that could have contributed to the
irregular pattern of results obtained in this case were already given in Art,
4.6-C. 1In addition, the assumptions made in calculating the average lateral
deformation may not have been 100% correct, and the very limited range of
confining pressures investigated in the present study was not enough to show
big differences in results, It is expected that if a bigger range of pressures
is applied, the influence on the lateral strain ratio will be regular and more

obvious.
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The influence of the limited range of rates of strain used in running the
various tests was not great, Generally, the lateral strain ratio (at any
density, confining pressure, and at any one level of stress or strain) decreased
as the rate of strain increased, This variation was not always regular, however,
Higher rates of strain must first be studied before any pattern of variation
could finally be reached.

F. Volume Changes

Changes in volume that take place within a soil sample during shear
are generally measured for saturated soils and in drained triaxial tests where
the actual volume of the water expelled from the specimen is measured in a
burette, In the present investigation, volume changes of dry Colorado River
sand specimens were computed using the measured axial and lateral deformations
of the triaxial specimen,

Knowing the original dimensions of the specimen and the average lateral
and axial deformation of the sample at any stage during the test, the volume
change at this point can be computed in the following manner:

ho = mDo° /4

Vo = Ao
where

Do = original diameter of the test specimen.

Ay = original area of the test specimen.

Ho = original height of the test specimen.

Vo = original volume of the test specimen,

H = H - &
D=%+A1
A = nD’/4




av

V-V
where

H = height of the specimen at any time during the test.

D = diameter of the specimen at any time during the test,
A = area of the specimen at any time during the test,

V = volume of the specimen at any time during the test,

4 = average axial deformation at any time during the test.

4; = average lateral deformation at any time during the test,

AV = volume change at any time during the test.

The volume changes obtained in this way for the various tests showed that
in the case of loose sand (density of 94 pcf) there was a volume decrease in
the sample during the entire test, that is AV was negative. Generally it
was observed that the amount of volume decrease increased as the strain increased
during the test. The effect of confining pressures was obvious but not regular
in all cases, because of the small differences in the amount of vacuums used
together with the reasons given before in Art, 4.6-C, The rate of strain had
some effect on the volume decrease of the sample but again no regular pattern
could be detected due to the limited range studied. A wider range of confining
pressures and rates of strain should be investigated before any final con-
clusions could be reached in this regard. Fig 14 shows examples of such variation.

In the case of dense sand (108.26 pcf density) the volume changes followed
a totally different pattern. In each test there was a small amount of volume
decrease at the beginning (at low strains), then the sample started expanding
(see Fig 14). The volume increase became more as the test progressed until

failure began. The reliability of the lateral deformation measurements after
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this stage of the test is questioned because of the excessive amount of deformation,
deformation, bulging, tilting, and sliding of the sample along the failure plane.
This is the reason why volume changes at the higher levels of strain are not
considered, although it must be pointed out here that in some tests the volume
increase started to drop down at these higher strains and after failure was

reached. The effect of confining pressure and rate of strain on the volume

changes of the test specimens of dense sand were apparent, but not consistent

in all tests for reasons given earlier. The validity of this statement has

yet to be proved for higher pressures and strain rates,

Comparing the amount of volume change in loose and dense sand, it was
found that the volume decrease of the former was about equal to the volume
increase in the latter, at small strains. The value of volume increase of
dense sand, however, was much more than the volume decrease in loose sand, at
larger strains.

Samples with medium density, of 102 pcf, behaved in the same manner as
those of dense sand. The amount of volume changes were less, however.

The real conclusion that could be reached from this limited investigation
of volume changes in dry sand specimens during shear was the development of a
new way of measuring volume changes for dry sand and the establishment of the
pattern of ‘such changes for various densities. More tests are required,
however, to fully investigate the effect of confining pressure and rate of
strain on volume changes.

It should be pointed out that the volume changes measured in this study
represent average values for the entire specimen. The volume changes taking
place at the ends of the specimen are different from those at the failure plane

due to end restraint by friction. Volume changes occur in sand specimens during
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shear due to movement of the particles. The sand particles move to a more
dense structure when loose sand is sheared, thus reducing the volume of voids
and causing a volume decrease, In case of dense sand, the particles during

shear move to a less compact structure producing a volume increase.




CHAPTER V

TRIAXIAL COMPRESSION TESTS ON DRY SAND

5.1 General

In this chapter a series of tests is reported where the conventional form
of triaxial test was used. The confining pressure is applied in the form of
air pressure, This form of test was chosen to make possible the application
of high pressures,

Tests were run on dry Ottawa sand at about its maximum and minimum densities.
The confining pressures were rather high, representing great depths. All tests
were performed using the same rate of loading. It was decided not to measure
the lateral deformation of the test specimen in these tests because such measure-
ment is too complicated and time-consuming.

The main objective of these tests was the study of the axial stress-
deformation characteristics of another sand under various conditions of density
and high confining pressures, and to determine whether or not there isg any

variation from the patterns developed in the previous chapter.

5.2 So0il Used and Sample Preparation

The present series of tests was run on an air-dry, clean sand known as
Ottawa sand. This is a fairly uniform fine sand that has a yellowish-white
color. The grain size distribution curve is given in Fig 3. The sand
particles are generally spherical in shape and have a rather smooth texture.
The hygroscopic moisture content of the sand is 0.15% and its specific gravity

2.68. The sand was prepared in the same manner as the Colorado River sand,
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except that all the particles in this case passed the number 40 U,S, Standard
sieve,

Sand specimens were prepared at two different densities that represented
the maximum and minimum values for this sand. These two densities were 98
and 109.6 pcf. The test specimens were prepared according to the procedure
outlined in Art. 4.4. The vacuum applied to the specimen through its base
at the end of sample preparation was about 9.0 psi, which was always less

than the confining pressure utilized in these tests.

5.3 Test Equipment and Procedure

The test equipment and set-up was similar to the one described in Art.
4.3 with only one exception, In this case the triaxial cell had the lucite
cylinder on., The cylinder represented the confining pressure chamber. This
pressure was applied in the form of air pressure through an opening at the
top of the cell (see Fig 4) and was regulated by a pressure regulator. The
air pressure was measured by a pressure gage reading up to 60 psi and having
a sensitivity of 1.0 psi. Both the pressure regulator and gage were placed
between the pressure source and the triaxial cell (and both were manufactured
by HOKE, Inc., USA).

After the sample was prepared the triaxial cell was put together, with
the lucite cylinder in place, The air pressure was then applied slowly in
the triaxial chamber and the vacuum at the base of the specimen reduced
simultaneously at the same rate until all the vacuum was removed and an equal
amount of pressure applied. The air pressure was then allowed to build up
gradually using the regulator, until the confining pressure desired was reached,
The valve at the bottom of the specimen was then closed, the loading rod

lowered, and the test continued as outlined in Art. 4.5 (except that no lateral
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deformation readings were taken).

Specimens at maximum and minimum densities were tested under 20 and
40 psi confining pressures. 1In all tests the load was applied at a speed of
0.064 in. per minute. This speed corresponds to a rate of strain equal to
2.0 per cent per minute (sample height being 3.2 in,). Each test was repeated
twice to insure accuracy and repeatability of the data, The results of the
two tests (representing one case) were then averaged graphically, and the

average considered in the analysis,

5.4 Results and Discussion

The results of triaxial tests expressing the axial stress-deformation
characteristics of dry Ottawa sand are presented in the following pages. The
pattern of variation of the stresses, strains, and modulus of deformation of
Ottawa sand with the variables investigated is the same as that for the
Colorado River sand. This pattern was better developed though and the results
were more consistent and less scattered, in the case of Ottawa sand, The reason
for this observation is believed to be the wide range of confining pressures
used,

The stress-strain curves for the investigated sand are shown in Appendix A,
The Mohr circles and envelopes, and the engle of internal friction are given
in Appendix B ( @ increased as the density increased).

A, Stresses and Strains

A summary of all results on Ottawa sand is presented in Tables 14
and 15, It can be seen that as the density or confining pressure increases
the strain €; increased, €40 decreased, and the ratio of the two strains
€ /€100 decreased. Also there was an increase in the value of the deviator

stress, at any level of stress or strain, with the increase in density and
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and confining pressure, The ratio GAI/OA‘.* increases, while GAO-S/CA-.x
decreased, with increasing density and confining pressure. It must be pointed
out here that the stress-strain curves remained linear to a point beyond half
the maximum deviator stress in almost all tests. Also that this initial
straight line portion is greater than in the case of Colorado River sand,
mainly because of the high confining pressures used. The strains, at any level
of stress, were generally a bit larger in this case than in the previous
chapter, in spite of the high pressures, because of the smaller size of the
sand particles and their shape and texture, and also for the more uniform
grading of Ottawa sand.
B. Modulus of Deformation

The initial tangent modulus of deformation of dry Ottawa sand is given
in Table 14(d). Its value increased with the increase in density and confining
pressure, Table 14(e) gives Esy and Table 14(f) Ejgo. The modulus of
deformation of the sand, at any level of stress 6r strain, increased as the
density or pressure was raised (as shown in Figs 15 and 16), These two figures
also indicate that the modulus decreased with the increase in the level of
strain or stress, Fig 17 gives the modulus of deformation in a non-dimensional
form,

From the results of triaxial tests on the two sands it can be concluded

that the stress-strain behavior of sands in general can be expected to follow

the same general patterns described before.
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CHAPTER VI

TRIAXIAL COMPRESSION TESTS ON NORMALLY-CONSOLIDATED CLAYS

6.1 General

The stress-strain properties of two sands were presented in the previous
two chapters. The next three chapters deal with such properties for clays.
The present chapter includes the axial stress-strain behavior of three normally-
consolidated clays. The investigated clays covered a wide range of plasticity
and moisture content. The clay specimens were manufactured in the laboratory
and were consolidated isotropically in triaxial cells. The author expects
the general pattern of behavior of these specimens to be similar to the
behavior of the same specimens consolidated anisotropically. The conventional
quick-triaxial test was used in performing the present series of tests, under
static load conditions.

The object of the tests was to investigate some of the variables presented
in Art. 3.2. The stresses, strains, and modulus of deformation were studied,
The factors investigated were the plasticity of the clay, moisture content,

consolidation pressure, confining pressure, and level of stress and strain.

6.2 Clays Studied

Three clays, with different plasticity, were used in the laboratory study.
The grain size distribution curves for these soils are given in Fig 3, and
various other properties of the clays are presented in Table 16. All properties
were determined using the generally accepted tests and procedures at the

University of Texas soil mechanics laboratory (9).



TABLE 16

PROPERTIES OF THE STUDIED CLAYS

Soil Property Taylor Marl Taylor Marl Vicksburg
No. 2 No. 1 Silty Clay
Liquid Limit, per cent 73.1 48.7 34.0
Plastic Limit, per cent 20.0 21.0 22.0
Plasticity Index,
per cent 53.1 27.7 12,0
Shrinkage Limit, per cent 14.6 14.0 -———-
Volumetric Shrinkage
(per cent of dry volume) 109.0 37.5 -—--
Specific Gravity 2,75 2,75 2.70
Hygroscopic Moisture
content, per cent 5.82 3.22 2,55
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The first soil known as "Taylor Marl No. 2" is a yellow, calcareous clay
obtained from an area in the vicinity of Austin, Texas. The soil comes from a
geological formation known as Taylor Marl. The soil plots above the A-line
on the Casagrande Plasticity Chart, and is classified as a high plasticity
clay (CH) in accordance with the Unified Soil Classification System, The dry
crushing strength is very high.

The second soil, identified as "Taylor Marl No. 1," was obtained from a
cut about seven miles east of Austin, Texas, The geology of the region (31)
indicates that it is a weathered Taylor Marl (found near the contact between
Taylor Marl and Austin chalk). It has a whitish-yellow color and a high calcium
carbonate content, It contains less colloidal clay than the normal Taylor Marl
of Central Texas. It is classified as an inorganic clay of medium plasticity
(CL). The dry crushing strength of the soil is high and the material slakes
down rapidly in water,

The third soil is known as "Vicksburg Silty Clay" and was obtained from
the vicinity of Vicksburg, Mississippi. It is a weathered leoss, that has a
tan color. The soil is classified as an inorganic silty clay of low plasticity.

The dry crushing strength is medium,

6,3 Preparation of Soil Samples

The clay specimens for this laboratory study were manufactured by a method
of vacuum extrusion, used at The University of Texas (26). This method of
preparation was selected to ensure clay specimens that have uniform density and
moisture content, and a degree of saturation as near to a hundred per cent as
possible.

The soil was first air dried, and then pulverized to pass a No. 40 U.S,

Standard sieve. Sufficient water was than added to the-soil to obtain the

102




desired moisture content., The soil was thoroughly mixed to uniform consistency,
sealed in containers, and allowed to temper in a moist room for about two weeks
before extrusion (to allow uniform moisture distribution and stabilization
throughout the material).

The moisture content of each soil was desired to be as close as possible
to the liquid limit of the soil, to be able to obtain normally-consolidated
samples under a wide range of consolidation pressures. At the same time the
water content could not be too high, otherwise the extruded specimens would
sag and deform excessively during handling. The upper limit of moisture
content that could practically be used to extrude samples of any clay was
arrived at by trial. The extruded specimens had about 58% moisture content in
the case of Taylor Marl No. 2, 38% for Taylor Marl No. 1, and 28% for Vicks-
burg silty clay,

The vacuum extrusion machine, used in sample preparation, was manufactured
by the International Clay Machinery Company. A simplified sketch of this device
is shown in Fig 18. The soil is fed into a loading hopper at the rear of the
first auger, This auger feeds the soil through a perforated plate between
augers. This plate forms the soil into ribbons which are picked up by the
second auger. A vacuum chamber, located above the second auger, places a
vacuum of about 10 psi on the soil. This vacuum draws air bubbles out of the
soil before it is forced through a 2.8 in. diameter circular die, to be trans-
formed to the desired shape and size,

Soil specimens were cut in about 6.4 in. length, wrapped in Saran Wrap
and sealed in jars, The jars were stored in a moist room for a period of at
least two weeks to allow for curing and to eliminate any thixotropic effects,

The extruded specimens had practically the same density. The variation

in moisture content from one specimen to the other, and within the same specimen,
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was found to be less than one per cent. The degree of saturation obtained by

this method was about 98% in the average,

6.4 Test Equipment and Procedure

Normally-consolidated clay specimens were obtained by consolidating the
extruded samples isotropically in triaxial cells, under the desired consolidation
pressure, Depth was simulated by causing consolidation under different pressures,
Clay specimens were consolidated under 10, 20, and 40 psi.

The extruded specimen, 2.8 in. diameter and 6.4 in. height, was removed
from the moist room and prepared for consolidation. The specimen was put in a
cylindrical split tube that had the same diameter and was 6.2 in. long. The
ends of the sample were cut flush with the ends of the split tube, producing
a specimen with similar dimensions. The specimen was then removed from the
tube and transferred to the triaxial cell.

The triaxial cells used were the same as the one described in Art. 5.3
except for size of base, which in this case was 2.8 in. diameter, Top and
bottom drainage were used to consolidate the sample, All drainage lines, porous
stones, base, and top cap were saturated with de-aired, de-mineralized water.
Saturated slit paper drains were also used to aid the drainage process. The
top and bottom drainage outlets of the triaxial cell, controlled by valves,
were connected to two graduated burettes filled with the same water, that had
an oil layer at top to prevent evaporation. The burettes were used to give
an indication of the progress of consolidation.

The specimen was placed on the base of the triaxial cell, that had a
porous stone on. The top porous stone and cap were then placed on the sample,
and the paper drains fitted around it, The membranes were then placed using a

membrane stretcher, to reduce sample disturbance, Two membranes, with a
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coating of silicone grease in between, were used to prevent seepage. The
membranes were 2.8 x 10 x 0.005 in. in size,

The membrane stretcher consisted of an aluminum tube, three in. inside
diameter and seven in, long. The tube was fitted with a wire mesh liner, and
had an outlet in the middle to be connected to a vacuum line, The vacuum
caused the membrane to be held against the inside wall of the cylinder,

After fitting the membranes, O-rings were placed to seal the cap and base
(two at each end). The drainage lines were connected and drainage valves
opened. The triaxial cell was then put together, and the loading rod held
in position, The air pressure, used for consolidation, was then applied.

The sample was left to consolidate until top and bottom drainage stopped,
and the moisture content throughout the sample became uniform. The time
necessary for the completion of the consolidation process varied for different
clays and pressures. It ranged from four days for the Vicksburg silty clay
under 10 psi to seven days for the Taylor Marl No. 2 under 40 psi. This time
was determined through several preliminary tests in which moisture contents were
checked to achieve uniform conditions in the soil sample. It was also checked
roughly by watching the water level in the burettes.

At the end of consolidation, the specimen represented a clay that was
normally-consolidated under a certain over-burden pressure, corresponding to
the consolidation pressure used. The difference between such a specimen and
field samples is believed to be the type of consolidation used.

The pressure was then reduced to zero, after closing the drainage valves,
to simulate extraction of the sample from a deep strata, The specimen was taken
out, its diameter measured, and its ends trimmed to give a length to diameter

ratio equal to two. Moisture samples were taken from these trimmings.
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The specimen was put once more in the triaxial cell, this time with only
one membrane around, and no paper drains. Two smooth aluminum end plates
were used instead of the porous stones to reduce friction. The drainage
valves were closed after applying the same consolidation pressure (in some
tests this pressure was less than the consolidation pressure). A quick tri-
axial test was performed on the sample, in the same manner described before
for sands. The speed of testing was adjusted to give a rate of strain 1.57%
per minute. At the end of the test the specimen was taken out and moisture
samples secured from its top, center, and bottom. The maximum variation of
moisture content within any sample did not exceed 0.5%.

As mentioned before, three clays were investigated, Samples of each clay
were consolidated and tested under 10, 20, and 40 psi. Samples of Taylor
Marl No. 1 and Vicksburg silty clay were also consolidated under 40 psi and

tested under 20 psi, to study the effect of confining pressure,

6.5 Results and Discussion

The stress-strain curves for all normally-consolidated samples are given
in Appendix C. Each test was repeated twice and the results averaged. The
variation in the average moisture content between any two similar tests was
always less than 0.6%

A. Axial stresses and strains

The properties of the three clays, as determined by quick triaxial
tests at a confining pressure 0oy equal to the consolidation pressure o, |,
are shown in Tables 17 and 18. It must be pointed out here that the stress-
strain curves for the Vicksburg silty clay (Appendix C) do not indicate a
maximum deviator stress. In such cases it is customary to choose the deviator

stress at 0.2 in. per in. axial strain to arbitrarily represent the maximum
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condition.

In all quick tests run on clay, in this study, the cohesion of the clay ¢
is taken to be half the maximum deviator stress, whether this maximum is
represented by a peak value as in the case of Taylor Marl clays or by the
value at 0.2 in per in. strain for the Vicksburg silty clay.

The effect of simulated depth involves both pressure and moisture content,
For normally-consolidated clays there is a definite relation between the
consolidation pressure increases and moisture content. As depth increases,
the consolidation pressure increases and moisture content decreases.

Table 17 shows that as the consolidation pressure increased (and moisture
content decreased) the initial strain €; increased, the strain at the maximum
deviator stress €50 decreased, and the ratio €;/€100 increased. It is
also observed that for the same consolidation pressure the value of € ,
and the ratio €,;/€00 increased with the increase in the plasticity index
(P.1.) of the soil.

The stress at the end of the linear portion of the stress-strain curve

o the maximum deviator stress O, , the stress at 0.2 in. per in.

zaXx

4,
strain © , and the ratio 0, /0A for any clay increased as the con-
Ao-a 1 ns X
solidation pressure increased, while the ratio © /o decreased., For
AO-G Alnx
the clays with stress-strain curves that peaked to a maximum stress (Taylor
Marl. No. 1 and 2) the value of O and Op /o decreased with the in-
& 1 AIIX
crease in the plasticity index, while the ratio © /o increased, at
AO-S Alnx
any consolidation pressure,
From the presented data it can be concluded that with the increase in

depth (higher O, and lower w% ) or decrease in plasticity index normally-

consolidated clays generally exhibit stress-strain curves that are linear to
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a greater stress and strain level, peak more, and decrease to a lower stress
value after the maximum,

Table 19 includes the results of tests run on specimens of two clays
normally-consolidated under 40 psi then tested with a confining pressure O3
equal to 20 psi. The results indicate that the reduced confining pressure
had some effect on axial strains., The strains at any level of stress are
generally greater for the lower confining pressures,

The effect of lowering the confining pressure on the maximum deviator
stress of Taylor Marl No. 1 specimens was negligible, This means that the
Mohr envelope for quick tests on specimens of this clay, consolidated under
the same pressure and tested gt varying values of O3 , will be a horizontal
line with ¢ =0 and 7 =1c¢ = 1/2 OA . The lower confining pressure

gave a slightly lower value of OA..x for the Vicksburg silty clay samples.
This indicates that the Mohr envelope in this case will show a very small ¢
value,

A correlation between the moisture content, cohesion, and plasticity of
the clay is presented in Appendix D, This correlation is given only as
evidence of the trend developed from a limited number of tests conducted in
this study., More research is definitely required however, before any final

correlation is reached,

Table 19 also shows that as the confining pressure decreased, A, and
1

Oy /o decreased, and © and © increased, It must be
1 Anlx

/o
AO-B AO-B Alux
recognized here that the reported effects of confining pressure are based on
the results of a few tests performed to give only a preliminary indication,
More tests are required in this respect.

B. Modulus of Deformation

In the following pages a number of tables and graphs will be presented
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that show the variation of the modulus of deformation of normally-consolidated
clays with the consolidation pressure, moisture content, confining pressure,
clay plasticity, and level of stress and strain.

Table 20 gives the initial modulus of deformation E; , Table 21 the
mosulus at half the maximum deviator stress Es; , and Table 22, the modulus
at maximum stress E;oo . The values of the modulus in these tables are also
divided by the consolidation pressure O, , and by the cohesion of the clay
c

The initial modulus E; , for any clay, increased with the increase in
consolidation pressure. Also as the plasticity of the clay decreased the
value of E; became higher.

The effect of the level of strain is shown in Figs 19 and 20. It can be
seen that the modulus remained constant for a small value of strain, then
decreased sharply with the increase in strain. This decrease became much less
at the higher vatues of strain, where the curves flatten considerably, The
increase in E . at the same strain level, was more for the higher range of
O, than for the lower range.

Figure 21 indicates that for all three clays, and at any consolidation
pressure, the modulus of deformation remained constant to a deviator stress
above half the maximum value and then decreased rapidly with the increase in
the level of stress,

To present the modulus of deformation of the clay in a non-dimensional
form, the modulus is divided by the consolidation pressure, as shown in Fig
22. It is obvious from this figure that the ratio E/0. , at any level of
stress, decreased with the increase in O, . However, this decrease was
less for the higher pressure range. Actually one average value of E/C,

could be considered for the range of pressures between 20 and 40 psi, at any
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level of stress. It can also be seen that the variation of E/0, with con-
solidation pressure was much less at the higher stress levels than at the lower
levels., The value of E/0, vaired with the level of stress, for any clay

and consolidation pressure.

In Fig 23 the ratio of the modulus of deformation to the cohesion of the
clay is presented. This non-dimensional ratio, at any value of o, , varied
with the level of stress as shown in figure, It also decreased with the in-
crease in O, , at any level of stress. This decrease, however, was less
at the higher stress levels. The decrease in E/c at the same F.S,, with the
increase in O, from 10 to 20 psi, or from 20 to 40 psi, was generally in
the same order of magnitude,

From the presented data it can be concluded that the plasticity index
of the clay has an effect on the modulus of deformation. This effect is
demonstrated in Fig 24, for Es; . It can be seen that the modulus of
deformation, the ratio E/0, and E/c (at the same level of stress and
consolidation pressure) increased with the decrease in plasticity index,

The modulus of deformation, at the same strain level and consolidation pressure,
was also greater for Taylor Marl No. 1 than for Taylor Marl No. 2 specimens.

The effect of confining pressure can be observed from Table 19 and Fig
25, As o3 decreased, the modulus of deformation E/os , and E/c (at
the same level of stress) decreased., Also the modulus at any level of strain

decreased.
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CHAPTER VII

TRIAXTAL COMPRESSION TESTS ON OVER-CONSOLIDATED CLAYS

7.1 General

The effect of stress-history on the axial stress-strain characteristics
of clays is investigated in this chapter, Specimens of two clays having the
same over-consolidation pressure % , and varying over-consolidation ratios
were tested (0,C.R, = 9 /0¢) . The investigated clays were Taylor Marl
No. 1 and 2. The specimens were extruded as described in Art, 6.3, and then
over-consolidated in the laboratory as will be discussed in the next article,
The test equipment and set up were the same as in the case of normally con-
solidated clays.

The object of this series of tests was to determine the effect of the
over-consolidation ratio on the axial stresses, strains, and modulus of
deformation of clays having the same % , also to compare the axial stress-
strain behavior of such clays with that of normally-consolidated specimens.

It must be pointed out that more research is required to investigate

fully the behavior of over-consolidated clays and study the various factors

influencing it,

7.2 Test Procedure

The test procedure is similar to the one used for normally-consolidated
clays except for one thing, Extruded specimens of Taylor Marl No. 1 and 2
were consolidated in triaxial cells under 40 psi, representing the over-con-

solidation pressure, as described before in Art. 6.4, At the end of this

125



consolidation period (under Jp) the consolidation pressure was reduced to
20 psi in some cases, and to 10 psi in others (representing the consolidation
pressure O ). The specimens were left under this new pressure until
stability was achieved and the moisture content became uniform throughout the
specimen. It was found, through preliminary tests and by watching the level
of water in the burettes, that a period equal to the original consolidation
period (under Og ) was quite sufficient to reach this stable condition.
After the completion of the second consolidation process (under &g Y,
the specimen was taken out and the test continued in exactly the same manner
as given in Art., 6.4. The specimens at this point represented an over-
consolidated clay with Op equal to 40 psi and O, equal to either 20
or 10 psi. The over-consolidation ratio is defined as the ratio of the over-
consolidation pressure Jp to the existing consolidation (or over-burden)
pressure O . Specimens with Og equal to 20 psi, represent an 0.C.R,
of 2. Those with C; equal to 10 psihave an 0.C.R, of 4, Normally con-
solidated clays have an O,C.R, equal to one,
Specimens of both Taylor Marl No. 1 and 2 were tested under 0.C.R.
equal to one, two, and four. Quick triaxial tests were performed on the

samples with the confining pressure equal to O, .

7.3 Results and Discussion

The stress-strain curves of over-consolidation clays (0,C.C.) are given
in Appendix E. The results are also summarized in Tables 23 and 24.

The maximum variation in moisture content of the top, center, and bottom
of all specimens was equal to 0.42%.

A. Axial Stresses and Strains

For the same clay, the initial strain €& increased with the decrease
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in the 0,C.R. 1Increased 0,C,R, means decreased O, and increased moisture
content of the clay. The values of €y and €, decreased as the 0,C.R.
decreased,
For all specimens the stress, at the same level of strain, increased with
the decrease in the 0,C,R., Also O , O , and © all increased
Ai Allx A()-2
with decreased 0,C,.R,
The ratios oAi/c . and ¢€;/¢€50 , for any clay, increased as the
a
O0.C,R, decreased, while the ratio o /o decreased,
2 Annx
The effect of the clay plasticity is demonstrated by comparing the results
of Taylor Marl No. 1 and 2, shown in Tables 23 and 24 and in Appendix E. It
can be seen that, at the same 0,C,R,, €; increased and o) decreased with
1
the increase in the plasticity index. Also the stress, at the same strain
and 0,C,R,, decreased as the P,I, increased, The increase in the plasticity

index caused a decrease in the value of GAI s OAO , and the ratio
2

ax

Oy /o » and an increase in the value of €350 and the ratio © /o
1 Duax Bo.2" Duax

(at the same 0,.C,R,).

The results of over-consolidated clay samples will now be compared with
those of tests on normally-consolidated specimens with the same o, , which
were presented in Art, 6,5. It was observed that the value of ¢€; ,
€ /e o] g, /o o] and @ are all smaller for

/™00 ? Ai g Ai An‘x ? Allx ’ AO 2
normally consolidated samples than for over-consolidated specimens, with the
same O; . Also the value of €90 , W, and © /o are larger
fo.2" Baax
for N.C,C. than for 0.C.C.
B. Modulus of Deformation

The effect of the level of strain on the modulus of deformation of

over-consolidated samples is presented in Fig 26, The variation of the modulus
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with the factor of safety is given in Fig 27. The modulus in all cases remained
constant to beyond half the maximum deviator stress and then decreased. The
modulus of deformation, at any strain and for the same clay, increased with

the decrease in the over-consolidation ratio. This was also the case for the
initial modulus, and the modulus at any factor of safety,

Tables 23 and 24 show that the non-dimensional ratio E/0y generally
decreased with increased 0.C.R,, while E/0, and E/c increased (at any
level of stress).

The increase in the plasticity index of the clay generally caused a de-
crease in the modulus and in the ratios E/0y , E/c , and E/o, (at any
level of stress and 0.C.R,). The clay with the lower plasticity index also
gave a higher modulus at any strain and 0.C.R,

When compared with the results of normally-consolidated clays (with the
same O, ) presented in Art., 6.5, the modulus of deformation and the ratio
E/0; of over-consolidated samples was found to be larger, while the ratio

E/c was smaller.
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CHAPTER VIII

UNCONFINED COMPRESSION TESTS ON CLAYS

8.1 General

A very limited number of unconfined tests were performed on clay samples
prepared by vacuum extrusion. In these tests measurements of lateral deformation
were made to evaluate the lateral strain ratio of clays,

The main object of these tests was to determine, in a very preliminary
way, the value of p for unconfined clay specimens. Also to see if there is
any evidence of variation in the value of | with changes in the level of
strain and stress, moisture content, and plasticity of the clay.

The unconfined compression test was chosen in this case because of the
difficulty of measuring lateral deformations of test specimens in the con-
ventional triaxial compression test. Nevertheless the importance of evaluating
the effect of confining pressures on the value of B must be emphasized.

The clay specimens were tested as extruded, that is, without any con-
solidation whatsoever. This was done because of limitations in time. The
clay samples in such case are believed to be slightly under-consolidated, The
need for testing normally- and over-consolidated clay specimens must be
pointed out,

Beside investigating the lateral strain ratio, an analysis of volume
changes, occurring during the unconfined compression tests, is given in
Appendix F. Also the axial stress-strain behavior of the unconfined clay

specimens will be presented.
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8.2 Sample Preparation

Specimens of Taylor Marl No. 1 and Vicksburg silty clay were extruded using
the technique described in Art. 6,3, The moisture content of the Taylor Marl
specimens was about 38% for the first group and 31% for the second group of
specimens. The Vicksburg silty clay samples had about 28% moisture content.
The reason for extruding Taylor Marl specimens with different moisture contents
was to investigate the effect of varying moisture content on the lateral
strain ratio of the clay. The effect of the plasticity of the clay was also
determined by comparing the Vicksburg silty clay specimens with Taylor Marl
No. 1, at about 317 moisture content.

The extruded clay samples were 2.8 in. diameter. When a sample was taken
out of the moist room to be tested, its ends were trimmed to give a length
equal to 5.6 in, The sample was then transferred to the machine as will be

described in the next article,

8.3 Test Equipment and Procedure

The test equipment and set-up were similar to the ones desceibed in Art,
4.4, The same triaxial cell, with the lucite pressure chamber removed, was
used. Dial extensometers are clamped in the same manner, to measure lateral
deformations. The 2.8 in. diameter, 5.6 in., length clay specimen was placed
on the base of the cell, which had a smooth circular 2.8 in. diameter aluminum
plate on. Another similar smooth plate was placed on top of the sample to
minimize friction at the ends,

The test procedure is similar to the one described in Art. 4.5. The
speed of testing was the same for all tests, and was adjusted to give a rate
of strain equal to 1.5 per cent per minute, The lower drainage valve of the

cell was kept closed during the quick unconfined test and no rubber membrane was

placed around the sample.
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8.4 Results and Discussion

Computation of stresses in this case, as in the case of vacuum tests on
sand, are based on areas of the specimens determined by actually measuring the
lateral deformations during the test. It was observed that using smooth end
plates reduced end friction considerably. The barreling effect was eliminated
to a large extent in these tests. Therefore it was assumed that the average
lateral deformation of the specimen at any time during the test, was equal
to the deformation at its mid-height determined by the extensometer readings.
It was also believed that by averaging the values of two perpendicular diameters
at the mid-height of the specimen, one can assume the cylindrical shape to be
retained throughout the test. 1In the present series of tests, it was noticed
that perfect cylindrical shape of the test specimen was not kept all the time,
but was better than in the case of sand. Except for the assumptions given
above, the method of computation used was similar to the one presented in
Art, 4.6,

A. Axial Stress-Deformation Properties

The results of the various tests are summarized in Table 25 and Fig
28, and the stress-strain curves are given in Appendix F. Comparing the
results of Taylor Marl specimens, it can be seen that for the same clay the
strain at any level of stress increased with the increase in moisture content,
Also the stress and the modulus of deformation, at any strain or stress level,
increased as the moisture content decreased, while the ratio E/c decreased,

B. Lateral Strain Ratio

Figure 28(b) indicates the variation of the lateral strain ratio with
the level of strain. The value of | increased with the increase in axial

strain. This increase however became much smaller in the higher strain levels.
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Table 25(b) shows the effect of the level of stress on the value of W .
As the stress level increased, the lateral strain ratio increased in all tests.
The presented results indicate that the moisture content and the plasticity
of the clay has some effect on the lateral strain ratio. The value of W ,
at any level of stress or strain, was larger for the lower moisture content

and higher plasticity index, The effect of these two variables was small.

More tests are required before final conclusions are made.
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CHAPTER IX

CONCLUSIONS

The following conclusions are drawn from the findings of this study:

1. The stress-strain properties of soils can be described by two
quantities, the modulus of deformation and lateral strain ratio, if the pattern
of variation of the two parameters can be determined,

2. The stress-strain behavior of sand was influenced by the density,
confining pressure, rate of strain, and level of stress and strain. The
properties of the clay were affected by the consolidation pressure, moisture
content, confining pressure, plasticity index, over-consolidation ratio, and
level of stress and strain.

3. The triaxial test, in spite of its limitations, is considered to be
the best available test at the present time.for studying the laboratory stress-
strain behavior and strength characteristics of soils. This evaluation is
based on a literature survey conducted by the author.

4. The modulus of deformation of the soil determined by quick triaxial
tests, was constant for only a small value of strain, after which it decreased
with the increase in strain. The modulus was also constant to a certain level
of stress, and then decreased as the stress increased.

5. The lateral strain ratio of the soil increased with the increase in
the level of stress or strain. This increase was more for dense than for
loose sand., For clay and loose sand the increase was much less at higher
strains.

6. The modulus of deformation of sand, at any level of stress or strain,
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increased with the increase in density or confining pressure, The effect of
the limited range of rates of strain investigated on the modulus of sand was
not pronounced. Only a small increase in the modulus was generally observed
when higher rates of strain were used,

7. The lateral strain ratio for sand, at the same level of stress or
strain, increased as the density increased (other factors being constant).

This ratio varied as the confining pressure was changed, but no regular pattern
of variation could be detected, for the small range of pressures used, The

rate of strain did not affect the lateral strain ratio of sand to any appreciable
degree. A small decrease in this ratio sometimes occurred with the limited
increase in the rate of strain experienced in this study.

8. The modulus of deformation of normally-consolidated clays, at any
level of strain or stress, increased with the increase in the consolidation
pressure (or the decreage in moisture content) and decreased as the plasticity
index of the clay increased. The modulus also decreased as the confining
pressure in the triaxial test decreased, for clays having the same consolidation
pressure.

9., The modulus of deformation of over-consolidated clay, at any level
of stress or strain, was higher than the modulus for the same clay normally-
consolidated under the same consolidation pressure. For over-consolidated
clay, with the same over-consolidation pressure, the modulus of deformation
decreased as the over-consolidation ratio increased (that is as the con-
solidation pressure decreased and moisture content increased), other factors
being constant. This modulus also decreased with the increase in plasticity
index.

10. The lateral strain ratio for unconfined clay was affected by the

variation in moisture content and plasticity of the clay. Based on the results
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of a very small number of tests on vacuum extruded clay specimens, it was
found that this ratio, at any level of .stress or strain, generally increased
with the decrease in moisture content and/or increase in plasticity index of
the clay.

11. The angle of internal friction of sand increased with the increase
in density and rate of strain. The effect of the rate of strain, though
small, was more for dense than loose sand, Any rate of strain, within the in-
vestigated range, may be used in the laboratory determination of the strength
and stress-strain characteristics of sand with no major variation in the results
to be expected,

12. A correlation exists among the moisture content, cohesion, and
plasticity of normally consolidated clays. This relation is helpful in pre-
dicting the strength of the undisturbed clay from the results of simple tests
on disturbed samples.

13. The deviator stress at any level of stress or strain increased, the
initial linear portion of the stress-strain curve and its slope (that is, the
stress and strain at which the curve is no longer a straight line) increased,

the ratio cAi/cAMx increased, the ratio GAo-1/cA-.x or OAo-a/cA..x

decreased, and the axial strain at maximum deviator stress decreased with the
increase in density, confining pressure and rate of strain in the case of sand.
The same variation occurred in the case of normally-consolidated clays as

the consolidation or confining pressure increased, and moisture content or
plasticity index decreased. This pattern also developed when the same c lay
was over-consolidated and had the same consolidation pressure as the normally
consolidated clay, also for over-consolidated clay (with the same over-

consolidation pressure) as the 0.C.R., decreased.
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14. The non-dimensional ratios E/0; and E/(93 tan ¢) for sand, and
E/c, and E/c for clay were found to vary (within narrow limits, at any
level of stress or strain) with the density confining pressure, rate of strain,
consolidation pressure, moisture content, plasticity index, and over-con-
solidation ratio. The pattern of variation of these ratios with the different
variables was given in this study. Average values for these ratios can be
determined, however, for a 1imited range of variation in the various factors.

15. The accumulation of information and values of the stress-strain
properties for various soils, such as those presented in chapters 4 through 8,
can be used to predict the behavior of a soil when no sample is available.

16. Volume changes during shear in vacuum triaxial test specimens on
dry sand, and unconfined clay specimens, were determined by measuring axial
and lateral deformations of the sample using extensometers. There was an
indication that volume changes for sand may be influenced by the confining
pressure and rate of strain. Dense sand increased in volume during the test,
while loose sand decreased in volume, The volume decrease that took place in
the case of a limited number of unconfined tests on clay was affected by the
moisture content and plasticity index of the clay.

17. The assumptions used in computing the results of conventional tri-
axial tests (no volume change and perfect cylindrical shape during the test)
were not found to be absolutely true, However, the results were very close
to the actual values, particularly in the lower range of strains. Therefore

the use of such assumptions is justified to a certain extent.
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CHAPTER X

RECOMMENDATIONS FOR FUTURE RESEARCH

The present investigation revealed several points that are worthy of
further pursuit and study, among which are:

1. Development of new testing equipment and procedures for laboratory
studies of stress-deformation characteristics of soils under various conditions.
Such methods must reproduce, as closely as possible, all natural conditions
encountered in the field and must not include any of the shortcomings of
present day facilities, Examples of the suggested equipment are a plane
strain apparatus or triaxial equipment with separate control of all principal
stresses,

2. Modification of the triaxial test, and other available equipment, to
eliminate its disadvantages. The main problem in triaxial equipﬁent are end
restraint due to friction and the difficulty in measuring lateral deformations
of the test specimen.

3. Investigation of the various factors believed to influence the stress-
strain properties of soils, for example the effect of the different types of
loading on stresses and strains. Such studies must also include a determination
of the modulus of deformation and lateral strain ratio for soils under various
conditions., The importance of investigating the effects of confining pressures
on the lateral strain ratio, and higher rates of strain on the stress-strain
properties in general, must be emphasized.

4, Accumulation of laboratory stress-strain data for many soils under

different conditions, following the steps outlined in the present study. Such
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information must then be analyzed statistically to yield the ranges within
which the stress-strain properties of various soil categories may be expected
to lie. This will help in describing the stress-strain behavior of a soil,
under a certain set of conditions, when no undisturbed sample is available.

5. Investigation of'the correlation suggested among moisture content,
cohesion, and soil plasticity for normally consolidated clays. Such a correlation
should be based on the results of a great number of tests and can be used to
predict the undisturbed strength of normally-consolidated clays from simple
tests on disturbed samples. The possibility of other correlations relating
various soil properties together must also be checked,

6. Correlation of load-settlement data, from full-scale field tests on
various foundation elements, with laboratory stress-strain properties of
soils. Such correlation will enable the prediction of field behavior from
data determined in the laboratory. It will also eliminate any complaint of
impericism of the laboratory data and is vitally important until a laboratory
test is developed that will fully reproduce all field conditions, a goal which

in the author's opinion must be acknowledged impossible,
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APPENDIX A

STRESS-STRAIN CURVES OF SANDS

i, Seating Error

One of the main difficulties encountered in the determination of the
stress-strain curves for soils, particularly sand, is the seating error. Most
stress-strain curves of granular soils exhibit the initial non-linear portion
to a greater or lesser degree. This may occur due to seating error, resulting
from the uneven bearing surfaces at the ends of the specimen (since the ends
of granular specimens can not be trimmed flush after preparation and must be
hand-finished and smoothed.) Uneven distribution of stresses at the ends of
the specimen during loading is thus produced,

The non-linear portion of stress-strain curves, due to seating error,
appeared in some of the tests performed in the present study. In these cases
a correction had to be introduced to overshadow some of the undesirable effects
of the seating error.

The correction used consists of producing the initial straight line
portion of the stress-strain curve to intersect the strain axis at a point.
The origin of the curve is shifted to this intersection point. In this way
only the initial portion of the curve is changed, by eliminating the non-

linear part, while the remainder of the curve remains the same.

ii, Stress-Strain Curves

The stress strain curves that are presented here were obtained by

drawing the deviator stress versus the axial strain. Figs 29, 30, 31, and
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32 show the axial stress-strain curves for dry Colorado River sand at various
conditions of density, confining pressure, and rate of strain. The stress-
strain curves for dry Ottawa sand with two densities and confining pressures
are given in Fig 33.

The deviator stresses in the case of Colorado River sand were computed
using areas determined from the meagsured deformations. In the case of Ottawa
sand, however, the stress was computed in the conventional way, assuming no

volume change.
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APPENDIX B
MOHR CIRCLES AND ENVELOPES OF SANDS

(Angle of Internal Friction)

The angle of internal friction of the Colorado River sand was determined
at three densities (108.26, 102, and 94 p.c.f.) and four rates of strains
(0.625, 1,25, 2,5, and 5% per minute). For each density and rate of strain
four vacuum triaxial tests were run (with 03 values of 2,32, 4,64, 6,95,
and 8.69 psi). For each of these tests the maximum stress ordinate of the
stress-strain curve was taken to be the maximum deviator stress 9\

nax

Knowing the value of Oz and GA‘.; for each test a Mohr circle could be
plotted, For each density and rate of strain four circles were thus determined.
The straight line envelope, tangent to the four circles and passing through
the origin was drawn to give the angle of internal friction for this condition.
The Mohr circles and envelopes, for the maximum and minimum rates of
strain tested, are shown on Figs 34, 35, and 36. It can be noticed that the
envelopes in some cases are not perfectly tangent to all four circles, This
can be expected for the various reasons discussed in Art. 4.6. The results,
however, are quite satisfactory,
Figure 37 shows the Mohr circles and envelopes for the dry Ottawa sand,

These were determined in the same way as for the Colorado River sand. The

angle of internal friction was greater for the higher density.
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APPENDIX C

STRESS-STRAIN CURVES FOR NORMALLY-CONSOLIDATED CLAYS

The stress-strain curves for the normally-consolidated clay specimens
are shown in Figs 38 and 39. The curves for both Taylor Marl No. 1 and 2
peak to a maximum deviator stress and then the stress reduces to a smaller
residual value. In the case of Vicksburg silty clay, the stress-strain curves
do not show a maximum value, and the maximum deviator stress is chosen
arbitrarily at a strain value of 0.2 in. per in,

The results of the triaxial tests were interpreted making the conventional
assumptions of no volume change and perfect cylindrical shape of the specimen
during a test. Each stress-strain curve shown in this study is the graphical
average of the results of two identical tests.

Figure 40 shows the stress-strain curves for Taylor Marl No. 1 and
Vicksburg silty clay specimens tested at a confining pressure other than the

consolidation pressure,
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APPENDIX D
CORRELATION AMONG MOISTURE CONTENT, COHESION,

AND PLASTICITY OF NORMALLY-CONSOLIDATED CLAYS

The suggested correlation is based on the results of a limited number of
laboratory tests. Only three clays were investigated in this study. Specimens
were extruded in the laboratory, then normally-consolidated in triaxial cells
(isotropic consolidation) under three pressures, 10, 20, and 40 psi. The cohe-
sion of each specimen was determined by running a quick (undrained) triaxial test.
The cohesion is considered to be equal to half the waximum deviator stress, or the
stress at 0.2 in, per in., strain if no maximum was apparent (based on the total
stress concept). The moisture content of the sample was taken to be the average
of the top, center, and bottom moistures, at the end of the triaxial test. The
determination of moisture contents and Atterberg limits was carried out in
accordance with the general accepted procedures used at The University of
Texas (9).

Figure 41 gives the relation between the moisture content and cohesion
(drawn on a log-scale) for the normally consolidated clay specimens. The
results for each clay lie on a straight line, in this gsemi-logarithmic plot.

The slope of each of these lines was drawn versus the plasticity index, then
the liquid limit, of the clay (as shown in Fig 42). 1In either case the result
was a straight line plot.

Because of insufficient data it cannot be concluded which of the two
correlations is the one that generally holds better, But in any case the

results show a definite trend and indicate the possibility of correlating

162




IN PERCENT

MOISTURE CONTENT (w)

70

65

60

55

50

45

40

35

30

25

20

QUICK TRIAXIAL TESTS ON NORMALLY-
CONSOLIDATED CLAYS

* TAYLOR MARL NO. |
X TAYLOR MARL NO. 2
® VICKSBURG SILTY CLAY

~—

1 i | I G N . . 1

2 3 4 5 6 7 8910 20

COHESION (c) IN PS.

FIG. 4. PERCENT MOISTURE CONTENT vs.
LOGARITM OF COHESION

163

30




35
30F
S 25}
v
[-%
o,
Z 20}
z
% 15+
~
S
=z 10}
5 -
1 1 1 )
o]
20 40 60 80
Liquip LimiT IN PERCENT
30
@ 25
]
.
[-%
~. 20
z
z
[ 15 F
°\°\ 10
3 o
5 -
1 s ! L
(o]

20 40 €0 80
PLASTICITY INDEX IN PERCENT

F1G.42. CORRELATION AMONG MOISTURE CONTENT, COHESION,
AND PLASTICITY OF NORMALLY-CONSOLIDATED CLAYS

164




TR —————

moisture content, cohesion, and plasticity (either L,L,, or P,I,) of normally-
consolidated clays. More data is required before any final correiation is
reached. The author suggests that this point be further investigated by
studying undisturbed field samples of normally-consolidated clays. If a
general correlation is reached, at least for clays in the same region and
with the same origin, the cohesion of undisturbed clay may be determined by

measuring the moisture content and Atterberg limits of a disturbed sample

of the same clay.
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APPENDIX E

STRESS-STRAIN CURVES FOR OVER-CONSOLIDATED CLAYS

The stress-strain curves for over-consolidated samples of Taylor Marl
No. 1 and 2 are shown in Fig 43. Each curve is the average of two identical
tests, The results are averaged graphically, The maximum variation in
moisture content between any two identical tests was in the order of 0.64%.

As the over-consolidation ratio increased, the initial linear portion of
the curve and its slope decreased, Also the curve peaked to a lesser degree,

The effect of plasticity on the stress-strain curves of over-consolidation
clays, with the same & and 0,C,R,, is observed by comparing curves (a)
and (b) in Fig 43, This effect has already been presented in Art. 7.3.

The deviator stresses were determined using areas computed on the

assumption of no volume change and cylindrical shape during the test,
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APPENDIX F
STRESS-STRAIN CURVES AND VOLUME CHANGES FOR

UNCONFINED TESTS ON CLAYS

i, Stress-Strain Curves

The stress-strain curves for unconfined compreseiou iesis on clays are
shown in Fig 44(a). Each one of these curves is an average of two identical
tests., As mentioned before, the stresses are computed on the basis of areas
determined from the measured lateral deformations. When compared with stresses
computed using the conventional assumptions of no volume change and perfect
cylindrical shape during the test, the difference was found to be very small
at all strains experienced in these tests., This difference increased as
strain got higher. The difference in the maximum stresses computed by both
methods was much less than the small difference between the maximum stresses
of the two identical tests, The maximum stresses in both methods occurred
at the same axial strain., Therefore it is concluded that the assumptions made
for computing stresses in unconfined and quick triaxial tests are justified,

particularly in the low range of strains.

ii. Volume changes During the Tests

The assumption of no volume change, usually made in the conventional
unconfined and triaxial tests on saturated clays, was investigated. It
was found that small values of volume change do occur in the test specimen
during the test, Fig 44(b)shows the results of unconfined tests on clays.

The volume change in any test increased with the increase in strain. The
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volume change that took place at any strain was higher for the clay with the
lower plasticity index and also for the clay with the higher moisture content.
The value of the volume change at ten per cent axial strain was, in the
average, equal to about one percent of the original volume of the specimen
before the test started, At fourteen per cent strain, the average volume
change became about 2 per cent, Therefore the validity of assuming zero
volume change depends in the first place on the level of strain, The
discrepancy between assumed and actual conditions are smaller at low strains.
The author expects that the confining pressure may probably have an effect

on volume changes. This and other variables should thoroughly be investigated

before final conclusions are drawn,
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